ترغب بنشر مسار تعليمي؟ اضغط هنا

A Gap in the Mass Distribution for Warm Neptune and Terrestrial Planets

128   0   0.0 ( 0 )
 نشر من قبل David Armstrong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structure in the planet distribution provides an insight into the processes that shape the formation and evolution of planets. The Kepler mission has led to an abundance of statistical discoveries in regards to planetary radius, but the number of observed planets with measured masses is much smaller. By incorporating results from recent mass determination programs, we have discovered a new gap emerging in the planet population for sub-Neptune mass planets with orbital periods less than 20 days. The gap follows a slope of decreasing mass with increasing orbital period, has a width of a few $M_oplus$, and is potentially completely devoid of planets. Fitting gaussian mixture models to the planet population in this region favours a bimodel distribution over a unimodel one with a reduction in Bayesian Information Criterion (BIC) of 19.9, highlighting the gap significance. We discuss several processes which could generate such a feature in the planet distribution, including a pileup of planets above the gap region, tidal interactions with the host star, dynamical interactions with the disk, with other planets, or with accreting material during the formation process.

قيم البحث

اقرأ أيضاً

81 - M. J. Hobson 2019
We present the detection of a Warm Neptune orbiting the M-dwarf Gl378, using radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. The star was observed in the context of the SOPHIE exoplanets conso rtiums subprogramme dedicated to finding planets around M-dwarfs. Gl378 is an M1 star, of solar metallicity, at a distance of 14.96 pc. The single planet detected, Gl378 b, has a minimum mass of 13.02 $rm M_{Earth}$ and an orbital period of 3.82 days, which place it at the lower boundary of the Hot Neptune desert. As one of only a few such planets around M-dwarfs, Gl378 b provides important clues to the evolutionary history of these close-in planets. In particular, the eccentricity of 0.1 may point to a high-eccentricity migration. The planet may also have lost part of its envelope due to irradiation.
Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial veloc ity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 Earth mass planets.
The advent of a new generation of radial velocity instruments has allowed us to break the one Earth-mass barrier. We report a new milestone in this context with the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet with half the mass of Venus. It is part of a system composed of three known transiting terrestrial planets (planets b to d). We announce the discovery of a fourth nontransiting planet with a minimum mass of 3.06_{-0.37}^{+0.33} MEarth and an orbital period of 12.796_{-0.019}^{+0.020} days and report indications for the presence of a fifth nontransiting terrestrial planet. With a minimum mass of 2.46_{-0.82}^{+0.66} MEarth and an orbital period 23.15_{-0.17}^{+0.60} days, this planet, if confirmed, would sit in the middle of the habitable zone of the L 98-59 system. L 98-59 is a bright M dwarf located 10.6 pc away. Positioned at the border of the continuous viewing zone of the James Webb Space Telescope, this system is destined to become a corner stone for comparative exoplanetology of terrestrial planets. The three transiting planets have transmission spectrum metrics ranging from 49 to 255, which makes them prime targets for an atmospheric characterization with the James Webb Space Telescope, the Hubble Space Telescope, Ariel, or ground-based facilities such as NIRPS or ESPRESSO. With an equilibrium temperature ranging from 416 to 627 K, they offer a unique opportunity to study the diversity of warm terrestrial planets. L 98-59 b and c have densities of 3.6_{-1.5}^{+1.4} and 4.57_{-0.85}^{+0.77} g.cm^{-3}, respectively, and have very similar bulk compositions with a small iron core that represents only 12 to 14 % of the total mass, and a small amount of water. However, with a density of 2.95_{-0.51}^{+0.79} g.cm^{-3} and despite a similar core mass fraction, up to 30 % of the mass of L 98-59 d might be water.
105 - Nicolas B. Cowan 2015
Earth has a unique surface character among Solar System worlds. Not only does it harbor liquid water, but also large continents. An exoplanet with a similar appearance would remind us of home, but it is not obvious whether such a planet is more likel y to bear life than an entirely ocean-covered waterworld---after all, surface liquid water defines the canonical habitable zone. In this proceeding, I argue that 1) Earths bimodal surface character is critical to its long-term climate stability and hence is a signpost of habitability, and 2) we will be able to constrain the surface character of terrestrial exoplanets with next-generation space missions.
We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا