ﻻ يوجد ملخص باللغة العربية
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting. As application, the classical Poisson algebra of polynomial functions on the initial values and the dynamical Poisson algebra coming from the wave equation are related. The text contains an introduction to the theory of distributions on manifolds as well as detailed proofs.
Exact solutions, in terms of special functions, of all wave equations $% u_{xx} - u_{tt} = V(x) u(t,x)$, characterised by eight inequivalent time independent potentials and by variable separation, have been found. The real valueness of the solutions
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements
In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain
The degree of mobility of a (pseudo-Riemannian) Kahler metric is the dimension of the space of metrics h-projectively equivalent to it. We prove that a metric on a closed connected manifold can not have the degree of mobility $ge 3$ unless it is esse
We prove an existence result for the deformed Hermitian Yang-Mills equation for the full admissible range of the phase parameter, i.e., $hat{theta} in (frac{pi}{2},frac{3pi}{2})$, on compact complex three-folds conditioned on a necessary subsolution