ﻻ يوجد ملخص باللغة العربية
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements, (ii) a method---based on (i)---for constructing soliton hierarchies from a symmetric space, (iii) the dressing action of the negative loop subgroup on the space of solutions of the related soliton equation, (iv) classical Backlund, Christoffel, Lie, and Ribaucour transformations for surfaces in three-space and their relation to dressing actions, (v) methods for constructing a Lax pair for the Gauss-Codazzi Equation of certain submanifolds that admit Lie transforms, (vi) how soliton theory can be used to generalize classical soliton surfaces to submanifolds of higher dimension and co-dimension.
There is a general method for constructing a soliton hierarchy from a splitting of a loop group as a positive and a negative sub-groups together with a commuting linearly independent sequence in the positive Lie subalgebra. Many known soliton hierarc
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is
The solutions of a large class of hierarchies of zero-curvature equations that includes Toda and KdV type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras~$ggg$. Their common fe
We prove that conformally parametrized surfaces in Euclidean space $Rcubec$ of curvature $c$ admit a symmetry reduction of their Gauss-Codazzi equations whose general solution is expressed with the sixth Painleve function. Moreover, it is shown that
We present two examples of reductions from the evolution equations describing discrete Schlesinger transformations of Fuchsian systems to difference Painleve equations: difference Painleve equation d-$Pleft({A}_{2}^{(1)*}right)$ with the symmetry gro