ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic resolution of the interplay of Kondo screening and superconducting pairing: Mn-phthalocyanine molecules adsorbed on superconducting Pb(111)

224   0   0.0 ( 0 )
 نشر من قبل Johannes Bauer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic molecules adsorbed on a superconductor give rise to a local competition of Cooper pair and Kondo singlet formation inducing subgap bound states. For Manganese-phthalocyanine molecules on a Pb(111) substrate, scanning tunneling spectroscopy resolves pairs of subgap bound states and two Kondo screening channels. We show in a combined approach of scaling and numerical renormalization group calculations that the intriguing relation between Kondo screening and superconducting pairing is solely determined by the hybridization strength with the substrate. We demonstrate that an effective one-channel Anderson impurity model with a sizable particle-hole asymmetry captures universal and non-universal observations in the system quantitatively. The model parameters and disentanglement of the two screening channels are elucidated by scaling arguments.



قيم البحث

اقرأ أيضاً

The interface between the two insulating oxides SrTiO$_3$ and LaAlO$_3$ gives rise to a two-dimensional electron system with intriguing transport phenomena, including superconductivity, which are controllable by a gate. Previous measurements on the ( 001) interface have shown that the superconducting critical temperature, the Hall density, and the frequency of quantum oscillations, vary nonmonotonically and in a correlated fashion with the gate voltage. In this paper we experimentally demonstrate that the (111) interface features a qualitatively distinct behavior, in which the frequency of Shubnikov-de Haas oscillations changes monotonically, while the variation of other properties is nonmonotonic albeit uncorrelated. We develop a theoretical model, incorporating the different symmetries of these interfaces as well as electronic-correlation-induced band competition. We show that the latter dominates at (001), leading to similar nonmonotonicity in all observables, while the former is more important at (111), giving rise to highly curved Fermi contours, and accounting for all its anomalous transport measurements.
Landaus Fermi liquid theory is a cornerstone of quantum many body physics. At its heart is the adiabatic connection between the elementary excitations of an interacting fermion system and those of the same system with the interactions turned off. Rec ently, this tenet has been challenged with the finding of a non-Landau Fermi liquid, that is a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. In particular, a spin-1 two-channel Kondo impurity with single-ion magnetic anisotropy $D$ has a topological quantum phase transition at a critical value $D_c$: for $D < D_c$ the system behaves as an ordinary Fermi liquid with a large Fermi level spectral weight, while above $D_c$ the system is a non-Landau Fermi liquid with a pseudogap at the Fermi level, topologically characterized by a non-trivial Friedel sum rule with non-zero Luttinger integrals. Here, we develop a non-trivial extension of this new Fermi liquid theory to general multi-orbital problems with finite magnetic field and we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) metal substrate that were previously described in disconnected and conflicting ways. The differential conductance measured using a scanning tunneling microscope (STM) shows a zero-bias dip that widens when the molecule is lifted from the surface and is transformed continuously into a peak under an applied magnetic field. Numerically solving a spin-1 impurity model with single-ion anisotropy for realistic parameter values, we robustly reproduce all these central features, allowing us to conclude that iron phthalocyanine molecules on Au(111) constitute the first confirmed experimental realization of a non-Landau Fermi liquid.
86 - G. Chiappe , E. Louis 2006
A recent experimental study showed that, distorting a CoPc molecule adsorbed on a Au(111) surface, a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), and two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single, half-filled, atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads (STM tip and gold), the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface, and between the molecule lobes.
Using the framework of the density-matrix renormalization group (DMRG), we study a quantum dot coupled to a superconducting nanowire with strong Rashba spin-orbit coupling. Regarding the singlet-to-doublet 0-$pi$ transition that takes place when the Kondo effect is overcome by the superconducting gap, we show that the Rashba coupling modifies the critical values at which the transition occurs, favouring the doublet phase. In addition, using a generalized Haldanes formula for the Kondo temperature $T_K$, we show that it is lowered by the Rashba coupling. We benchmark our DMRG results comparing them with previous numerical renormalization group (NRG) results. The excellent agreement obtained opens the possibility of studying chains or clusters of impurities coupled to superconductors by the means of DMRG.
We study the low energy spectrum of a correlated quantum dot embedded between the normal conducting and superconducting reservoirs and hybridized with the topological superconducting nanowire, hosting the Majorana end-modes. We investigate the leakin g Majorana quasiparticle and inspect its interplay with the proximity induced on-dot pairing and correlations. In particular, we focus on the subgap Kondo effect near the quantum phase transition/crossover from the spinfull (doublet) to the spinless (BCS-type singlet) configurations. Treating the correlations perturbatively and within the NRG approach we study its signatures observable in the Andreev (particle-to-hole conversion) tunneling spectroscopy. We find, that the leaking Majorana mode has a spin-selective influence on the subgap Kondo effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا