ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and correlation effects on band structure explain the anomalous transport properties of (111) LaAlO$_3$/SrTiO$_3$

113   0   0.0 ( 0 )
 نشر من قبل Udit Khanna
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interface between the two insulating oxides SrTiO$_3$ and LaAlO$_3$ gives rise to a two-dimensional electron system with intriguing transport phenomena, including superconductivity, which are controllable by a gate. Previous measurements on the (001) interface have shown that the superconducting critical temperature, the Hall density, and the frequency of quantum oscillations, vary nonmonotonically and in a correlated fashion with the gate voltage. In this paper we experimentally demonstrate that the (111) interface features a qualitatively distinct behavior, in which the frequency of Shubnikov-de Haas oscillations changes monotonically, while the variation of other properties is nonmonotonic albeit uncorrelated. We develop a theoretical model, incorporating the different symmetries of these interfaces as well as electronic-correlation-induced band competition. We show that the latter dominates at (001), leading to similar nonmonotonicity in all observables, while the former is more important at (111), giving rise to highly curved Fermi contours, and accounting for all its anomalous transport measurements.

قيم البحث

اقرأ أيضاً

The conducting gas that forms at the interface between LaAlO$_3$ and SrTiO$_3$ has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here we report detailed measurements of the low-temperature electrical properties of (111) LAO/STO interface samples. We find that the low-temperature electrical transport properties are highly anisotropic, in that they differ significantly along two mutually orthogonal crystal orientations at the interface. While anisotropy in the resistivity has been reported in some (001) samples and in (110) samples, the anisotropy in the (111) samples reported here is much stronger, and also manifests itself in the Hall coefficient as well as the capacitance. In addition, the anisotropy is not present at room temperature and at liquid nitrogen temperatures, but only at liquid helium temperatures and below. The anisotropy is accentuated by exposure to ultraviolet light, which disproportionately affects transport along one surface crystal direction. Furthermore, analysis of the low-temperature Hall coefficient and the capacitance as a function of back gate voltage indicates that in addition to electrons, holes contribute to the electrical transport.
The 2-dimensional electron system at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective ban d structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schrodinger-Poisson calculations and observe a Lifshitz transition at a density of $2.9times10^{13}$ cm$^{-2}$. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.
We measured the magnetoresistance of the 2D electron liquid formed at the (111) LaAlO$_3$/SrTiO$_3$ interface. The hexagonal symmetry of the interface is manifested in a six-fold crystalline component appearing in the anisotropic magnetoresistance (A MR) and planar Hall data, which agree well with symmetry analysis we performed. The six-fold component increases with carrier concentration, reaching 15% of the total AMR signal. Our results suggest the coupling between higher itinerant electronic bands and the crystal as the origin of this effect and demonstrate that the (111) oxide interface is a unique hexagonal system with tunable magnetocrystalline effects.
The transport and thermoelectric properties of the interface between SrTiO$_3$ and a 26-monolayer thick LaAlO$_3$-layer grown at high oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and in magnetic fields up to 18 T. For $T >$ 4.2 K, two different electron-like charge carriers originating from two electron channels which contribute to transport are observed. We probe the contributions of a degenerate and a non-degenerate band to the thermoelectric power and develop a consistent model to describe the temperature dependence of the thermoelectric tensor. Anomalies in the data point to an additional magnetic field dependent scattering.
85 - N. Lebedev , Y. Huang , A. Rana 2021
In this paper we study LaAlO$_3$/Eu$_{1-x}$La$_x$TiO$_3$/SrTiO$_3$ structures with nominally x = 0, 0.1 and different thicknesses of the Eu$_{1-x}$La$_x$TiO$_3$ layer. We observe that both systems have many properties similar to previously studied La AlO$_3$/EuTiO$_3$/SrTiO$_3$ and other oxide interfaces, such as the formation of a 2D electron liquid for 1 or 2 unit cells of Eu$_{1-x}$La$_x$TiO$_3$; a metal-insulator transition driven by the thickness increase of Eu$_{1-x}$La$_x$TiO$_3$ layer; the presence of an Anomalous Hall effect (AHE) when driving the systems above the Lifshitz point with a backgate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of SrTiO$_3$ crystal and the inevitable effects of charge trapping when using back gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا