ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo effect of an adsorbed cobalt phthalocyanine (CoPc) molecule: the role of quantum interference

87   0   0.0 ( 0 )
 نشر من قبل Guillermo Chiappe
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent experimental study showed that, distorting a CoPc molecule adsorbed on a Au(111) surface, a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), and two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single, half-filled, atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads (STM tip and gold), the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface, and between the molecule lobes.



قيم البحث

اقرأ أيضاً

The Hall effect and resistivity of the carrier doped magnetic semiconductor Fe$_{1-x}$Co$_x$S$_2$ were measured for $0le x le 0.16$, temperatures between 0.05 and 300 K, and fields of up to 9 T. Our Hall data indicate electron charge carriers with a density of only 10 to 30% of the Co density of our crystals. Despite the previous identification of magnetic Griffiths phase formation in the magnetic and thermodynamic properties of this system for the same range of $x$, we measure a temperature independent resistivity below 0.5 K indicating Fermi liquid-like transport. We also observe no indication of quantum corrections to the conductivity despite the small values of the product of the Fermi wave vector and the mean-free-path, $1.5 le k_Fell le 15$, over the range of $x$ investigated. This implies a large inelastic scattering rate such that the necessary condition for the observation of quantum contributions to the carrier transport, quantum coherence over times much longer than the elastic scattering time, is not met in our samples. Above 0.5 K we observe a temperature and magnetic field dependent resistivity that closely resembles a Kondo anomaly for $x$ less than that required to form a long range magnetic state, $x_c$. For $x>x_c$, the resistivity and magnetoresistance resemble that of a spin glass with a reduction of the resistivity by as much as 35% in 5 T fields. We also observe an enhancement of the residual resistivity ratio by almost a factor of 2 for samples with $xsim x_c$ indicating temperature dependent scattering mechanisms beyond simple carrier-phonon scattering. We speculate that this enhancement is due to charge carrier scattering from magnetic fluctuations which contribute to the resistivity over a wide temperature range.
260 - J. Bauer , J. I. Pascual , 2012
Magnetic molecules adsorbed on a superconductor give rise to a local competition of Cooper pair and Kondo singlet formation inducing subgap bound states. For Manganese-phthalocyanine molecules on a Pb(111) substrate, scanning tunneling spectroscopy r esolves pairs of subgap bound states and two Kondo screening channels. We show in a combined approach of scaling and numerical renormalization group calculations that the intriguing relation between Kondo screening and superconducting pairing is solely determined by the hybridization strength with the substrate. We demonstrate that an effective one-channel Anderson impurity model with a sizable particle-hole asymmetry captures universal and non-universal observations in the system quantitatively. The model parameters and disentanglement of the two screening channels are elucidated by scaling arguments.
Kondo effect offers an important paradigm to understand strong correlated many-body physics. Although under intensive study, some of important properties of Kondo effect, in systems where both itinerant coupling and localized coupling play significan t roles, are still elusive. Here we report evolution and universality of two stage Kondo effect, the simplest form where both couplings are important using single molecule transistor devices incorporating Manganese phthalocyanine molecules. Kondo temperature T* of two-stage Kondo effect evolves linearly against effective interaction of involved two spins. Observed Kondo resonance shows universal quadratic dependence with all adjustable parameters: temperature, magnetic field and biased voltages. The difference in nonequilibrium conductance of two stage Kondo effect to spin 1/2 Kondo effect is also identified. Messages learned in this study fill in directive experimental evidence of evolution of two-stage Kondo resonance near quantum phase transition point, and help in understanding sophisticated molecular electron spectroscopy in strong correlation regime.
Using a combination of scanning tunneling spectroscopy and atomic lateral manipulation, we obtained a systematic variation of the Kondo temperature ($T_mathrm K$) of Co atoms on Ag(111) as a function of the surface state contribution to the total den sity of states at the atom adsorption site ($rho_s$). By sampling the $T_mathrm K$ of a Co atom on positions where $rho_s$ was spatially resolved beforehand, we obtain a nearly linear relationship between both magnitudes. We interpret the data on the basis of an Anderson model including orbital and spin degrees of freedom (SU(4)) in good agreement with the experimental findings. The fact that the onset of the surface band is near the Fermi level is crucial to lead to the observed linear behavior. In the light of this model, the quantitative analysis of the experimental data evidences that at least a quarter of the coupling of Co impurities with extended states takes place through the hybridization to surface states. This result is of fundamental relevance in the understanding of Kondo screening of magnetic impurities on noble metal surfaces, where bulk and surface electronic states coexist.
98 - H. Maebashi , K. Miyake , 2005
The problem of a spin-1/2 magnetic impurity near an antiferromagnetic transition of the host lattice is solved. The problem is shown to transform to a multichannel problem. A variety of fixed points is discovered asymptotically near the AFM-critical point. Among these is a new variety of stable fixed point of a multichannel Kondo problem which does not require channel isotropy. At this point Kondo screening disappears but coupling to spin-fluctuations remains. Besides its intrinsic interest, the problem is an essential ingredient in the problem of quantum critical points in heavy-fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا