ﻻ يوجد ملخص باللغة العربية
We have studied the evolution of magnetic and orbital excitations as a function of hole-doping in single crystal samples of Sr2Ir(1-x)Rh(x)O4 (0.07 < x < 0.42) using high resolution Ir L3-edge resonant inelastic x-ray scattering (RIXS). Within the antiferromagnetically ordered region of the phase diagram (x < 0.17) we observe highly dispersive magnon and spin-orbit exciton modes. Interestingly, both the magnon gap energy and the magnon bandwidth appear to increase as a function of doping, resulting in a hardening of the magnon mode with increasing hole doping. As a result, the observed spin dynamics of hole-doped iridates more closely resemble those of the electron-doped, rather than hole-doped, cuprates. Within the paramagnetic region of the phase diagram (0.17 < x < 0.42) the low-lying magnon mode disappears, and we find no evidence of spin fluctuations in this regime. In addition, we observe that the orbital excitations become essentially dispersionless in the paramagnetic phase, indicating that magnetic order plays a crucial role in the propagation of the spin-orbit exciton.
We studied the in-plane dynamic and static charge conductivity of electron doped Sr2IrO4 using optical spectroscopy and DC transport measurements. The optical conductivity indicates that the pristine material is an indirect semiconductor with a direc
After three decades of enormous scientific inquiry, the emergence of superconductivity in the cuprates remains an unsolved puzzle. One major challenge has been to arrive at a satisfactory understanding of the unusual metallic normal state from which
Motivated by recent observations of charge order in the pseudogap regime of hole-doped cuprates, we show that {it crisscrossed} stripe order can be stabilized by coherent, momentum-dependent interlayer tunneling, which is known to be present in sever
The magnetic excitations in electron doped (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with $x = 0.03$ were measured using resonant inelastic X-ray scattering at the Ir $L_3$-edge. Although much broadened, well defined dispersive magnetic excitations were observed
We use resonant inelastic x-ray scattering (RIXS) at the Ir L3 edge to study the effect of hole doping upon the Jeff=1/2 Mott-insulating state in Sr2IrO4, via Rh replacement of the Ir site. The spin-wave gap, associated with XY-type spin-exchange ani