ﻻ يوجد ملخص باللغة العربية
By considering three different spin models belonging to the generalized voter class for ordering dynamics in two dimensions [I. Dornic, textit{et al.} Phys. Rev. Lett. textbf{87}, 045701 (2001)], we show that they behave differently from the linear voter model when the initial configuration is an unbalanced mixture up and down spins. In particular we show that for nonlinear voter models the exit probability (probability to end with all spins up when starting with an initial fraction $x$ of them) assumes a nontrivial shape. The change is traced back to the strong nonconservation of the average magnetization during the early stages of dynamics. Also the time needed to reach the final consensus state $T_N(x)$ has an anomalous nonuniversal dependence on $x$.
We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the ph
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system
A symmetry breaking (SB) involves an abrupt change in the set of microstates that a system can explore. This change has unavoidable thermodynamic implications. According to Boltzmanns microscopic interpretation of entropy, a shrinkage of the set of c
.Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the di