ترغب بنشر مسار تعليمي؟ اضغط هنا

The static-light baryon spectrum from twisted mass lattice QCD

142   0   0.0 ( 0 )
 نشر من قبل Marc Wagner
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the static-light baryon spectrum by means of Wilson twisted mass lattice QCD using N_f = 2 flavors of sea quarks. As light u/d valence quarks we consider quarks, which have the same mass as the sea quarks with corresponding pion masses in the range 340 MeV < m_PS < 525 MeV, as well as partially quenched s quarks, which have a mass around the physical value. We consider all possible combinations of two light valence quarks, i.e. Lambda, Sigma, Xi and Omega baryons corresponding to isospin I = 0, 1/2, 1 and strangeness S = 0, -1, -2 as well as angular momentum of the light degrees of freedom j = 0, 1 and parity P = +, -. We extrapolate in the light u/d and in the heavy b quark mass to the physical point and compare with available experimental results. Besides experimentally known positive parity states we are also able to predict a number of negative parity states, which have neither been measured in experiments nor previously been computed by lattice methods.



قيم البحث

اقرأ أيضاً

119 - M. Padmanath 2019
In this report, the most recent and precise estimates of masses of ground state baryons using lattice QCD are discussed. Considering the prospects in the heavy baryon sector, lattice estimates for these are emphasized. The first and only existing lat tice determination of the highly excited $Omega_c$ excitations in relation to the recent LHCb discovery is also discussed.
We study $I=0$ quarkonium resonances decaying into pairs of heavy-light mesons using static-static-light-light potentials from lattice QCD. To this end, we solve a coupled channel Schrodinger equation with a confined quarkonium channel and channels w ith a heavy-light meson pair to compute phase shifts and $mbox{T}$ matrix poles for the lightest decay channel. We discuss our results for $S$, $P$, $D$ and $F$ wave states in the context of corresponding experimental results, in particular for $Upsilon(10753)$ and $Upsilon(10860)$.
115 - E. Gregory , A. Irving , B. Lucini 2012
We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 co nfigurations at 0.092 fm with a pion mass of 360 MeV. We report masses for 10 glueball states. We discuss the prospects for unquenched lattice QCD calculations of the oddballs.
We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for two mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and p seudo scalar masses in the range 280 MeV to 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision.
We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants f_K, f_D and f_Ds, performed with N_f=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the tw isted mass fermionic action at maximal twist. With respect to our previous study (0709.4574 [hep-lat]), here we have analysed data at three values of the lattice spacing (a=0.10 fm, 0.09 fm, 0.07 fm) and performed the continuum limit, and we have included at a=0.09 fm data with a lighter quark mass (m_pi = 260 MeV) and a larger volume (L = 2.7 fm), thus having at each lattice spacing L >= 2.4 fm and m_pi*L >= 3.6. Our result for the kaon decay constant is f_K=(157.5 +- 0.8|_{stat.} +- 3.3|_{syst.}) MeV and for the ratio f_K/f_pi=1.205 +- 0.006|_{stat.} +- 0.025|_{syst.}, in good agreement with the other N_f=2 and N_f=2+1 lattice calculations. For the D and D_s meson decay constants we obtain f_D=(205 +- 7|_{stat.} +- 7|_{syst.}) MeV, in good agreement with the CLEO-c experimental measurement and with other recent N_f=2 and N_f=2+1 lattice calculations, and f_{Ds}=(248 +- 3|_{stat.} +- 8|_{syst.}) MeV that, instead, is 2.3 sigma below the CLEO-c/BABAR experimental average, confirming the present tension between lattice calculations and experimental measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا