ﻻ يوجد ملخص باللغة العربية
The A4 x U(1) flavor model of He, Keum, and Volkas is extended to provide a minimal modification to tribimaximal mixing that accommodates a nonzero reactor angle theta13 ~ 0.1. The sequestering problem is circumvented by forbidding superheavy scales and large coupling constants which would otherwise generate sizable RG flows. The model is compatible with (but does not require) a stable or metastable dark matter candidate in the form of a complex scalar field with unit charge under a discrete subgroup Z4 of the U(1) flavor symmetry.
We consider renormalizable SO(10) Yukawa interactions and put the three fermionic 16-plets into the 3-dimensional irreducible A_4 representation. Scanning the possible A_4 representation assignments to the scalars, we find a unique case which allows
We construct lepton flavour models based on two $A_4$ modular symmetries. The two $A_4$ are broken by a bi-triplet field to the diagonal $A_4$ subgroup, resulting in an effective modular $A_4$ flavour symmetry with two moduli. We employ these moduli
We build an $S_4$ model for neutrino masses and mixings based on the self-complementary (SC) neutrino mixing pattern. The SC mixing is constructed from the self-complementarity relation plus $delta_{rm CP}=-frac{pi}{2}$. We elaborately construct the
We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large $theta_{13}$, possible non maximal $theta_{23}$, approaching sensitivity on $delta_{CP}$) and their implications on m
We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of