ﻻ يوجد ملخص باللغة العربية
We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of A4. The top quark Yukawa interaction is present at the renormalizable level in the superpotential while all the other Yukawa interactions arise only at higher orders. We study the Higgs potential and show that it can potentially solve the so called vacuum alignment problem. The leading order predictions are not spoiled by subleading corrections.
CP violation, fermion masses and mixing angles including that of neutrinos are studied in an SUSY SO(10)$times Delta (48)times$ U(1) model. The nonabelian SU(3) discrete family symmetry $Delta(48)$ associated with a simple scheme of U(1) charge assig
For all the success of the Standard Model (SM), it is on the verge of being surpassed. In this regard we argue, by showing a minimal flavor-structured model based on the non-Abelian discrete $SL_2(F_3)$ symmetry, that $U(1)$ mixed-gravitational anoma
We have built a renormalizable $U(1)_X$ model with a $Sigma (18)times Z_4$ symmetry, whose spontaneous breaking yields the observed SM fermion masses and fermionic mixing parameters. The tiny masses of the light active neutrinos are produced by the t
We analyse the structure of Yukawa couplings in local SU(5) F-theory models with $E_7$ enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire com
We propose a predictive model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, which is supplemented by the $D_4$ family symmetry and several auxiliary cyclic symmetries whose spontaneous breaking produces the observed SM fermion mass