ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedding the Zee-Wolfenstein neutrino mass matrix in an SO(10) x A4 GUT scenario

139   0   0.0 ( 0 )
 نشر من قبل Walter Grimus
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider renormalizable SO(10) Yukawa interactions and put the three fermionic 16-plets into the 3-dimensional irreducible A_4 representation. Scanning the possible A_4 representation assignments to the scalars, we find a unique case which allows to accommodate the down-quark and charged-lepton masses. Assuming type II seesaw dominance, we obtain a viable scenario with the Zee-Wolfenstein neutrino mass matrix, i.e., the Majorana mass matrix with a vanishing diagonal. Contributions from the charged-lepton mass matrix resolve the well-known problems with lepton mixing arising from the vanishing diagonal. In our scenario, fermion masses and mixings are well reproduced for both normal and inverted neutrino mass spectra, and b-tau Yukawa unification and definite predictions for the effective mass in neutrinoless double-beta decay are obtained.



قيم البحث

اقرأ أيضاً

114 - N. Haba , M. Matsuda , M. Tanimoto 1999
It is well known that Zee type neutrino mass matrix can provide bi-maximal neutrino mixing for three neutrinos. We study the reconciliation of this model with the gauge mediated supersymmetry breaking scenario, which naturally suppresses the large fl avor changing neutral current and CP violation in the supersymmetric standard model. When the messenger fields have suitable B-L charges, the radiative correction naturally induces the Zee neutrino mass matrix, which provides tiny neutrino masses and large lepton flavor mixings. Our numerical results are consistent with the neutrino oscillation experiments in both three and four neutrino models.
Supersymmetric $SO(10)$ grand unified models with renormalizable Yukawa couplings involving only ${bf 10}$ and $overline{bf 126}$ Higgs fields have been shown to realize the fermion masses and mixings economically. In previous works, the sum rule of the fermion mass matrices are given by inputting the quark matrices, and the neutrino mixings are predicted in this framework. Now the three neutrino mixings have been measured, and in this paper, we give the sum rule by inputting the lepton mass matrices, which makes clear certain features of the solution, especially if the vacuum expectation values of ${bf 126}+ overline{bf126}$ ($v_R$) are large and the right-handed neutrinos are heavy. We perform the $chi^2$ analyses to fit the fermion masses and mixings using the sum rule. In previous works, the best fit appears at $v_R sim 10^{13}$ GeV, and the fit at the large $v_R$ scale ($sim 10^{16}$ GeV) has been less investigated. Our expression of the sum rule has a benefit to understand the flavor structure in the large $v_R$ solution. Using the fit results, we perform the calculation of the $mu to egamma$ process and the electric dipole moment of electron, and the importance of $v_R$ dependence emerges in low energy phenomena. We also show the prediction of the CP phase in the neutrino oscillations, which can be tested in the near future.
It is shown that the bi-maximal solution is the only possibility to reconcile Zee-type neutrino mass matrix with three flavors to the current atmospheric and solar neutrino experimental data. The mass of the lightest neutrino, which consist mostly of $ u_{mu}$ and $ u_{tau}$, is $simeq Delta m_{odot}^2/(2sqrt{Delta m_{atm}^2})$. The related topics on Zee-type neutrino mass matrix are also discussed.
194 - K.S. Babu , Shaikh Saad 2020
The clockwork mechanism, which can naturally explain the origin of small numbers, is implemented in $SO(10)$ grand unified theories to address the origin of hierarchies in fermion masses and mixings. We show that a minimal Yukawa sector involving a $ 10_H$ and $overline{126}_H$ of Higgs bosons, extended with two clockwork chains consisting of $16+overline{16}$ vector-like fermions, can explain the hierarchical patterns with all the Yukawa couplings being of order one. Emergence of a realistic mass spectrum does not require any symmetry that distinguishes the three generations. We develop clockwork-extended $SO(10)$ GUTs both in the context of SUSY and non-SUSY frameworks. Implementation of the mechanism in non-SUSY scenario assumes a Peccei-Quinn symmetry realized at an intermediate scale, with the clockwork sector carrying non-trivial charges, which solves the strong CP problem and provides axion as a dark matter candidate.
113 - J. Sayre , S. Wiesenfeldt 2006
SO(10) GUT models with only small Higgs fields use higher-dimensional operators to generate realistic fermion mass matrices. In particular, a Higgs field in the spinor representation, 16^d_H, acquires a weak scale vev. We include the weak vev of the corresponding field bar{16}^u_H and investigate the effect on two successful models, one by Albright and Barr (AB) and another by Babu, Pati and Wilczek (BPW). We find that the BPW model is a particular case within a class of models with identical fermion masses and mixings. In contrast, we expect corrections to the parameters of AB-type models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا