ترغب بنشر مسار تعليمي؟ اضغط هنا

High-frequency performance of scaled carbon nanotube array field-effect transistors

224   0   0.0 ( 0 )
 نشر من قبل Michael Engel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm, we observe output current saturation and obtain as-measured, extrinsic current gain and power gain cut-off frequencies, respectively, of 7 GHz and 15 GHz. While the extrinsic current gain is comparable to the state-of-the-art the extrinsic power gain is improved. The de-embedded, intrinsic current gain and power gain cut-off frequencies of 153 GHz and 30 GHz are the highest values experimentally achieved to date. We analyze the consistency of DC and AC performance parameters and discuss the requirements for future applications of carbon nanotube array transistors in high-frequency electronics.

قيم البحث

اقرأ أيضاً

State-of-the-art carbon nanotube field-effect transistors (CNFETs) behave as Schottky barrier (SB)-modulated transistors. It is known that vertical scaling of the gate oxide significantly improves the performance of these devices. However, decreasing the oxide thickness also results in pronounced ambipolar transistor characteristics and increased drain leakage currents. Using a novel device concept, we have fabricated high-performance, enhancement-mode CNFETs exhibiting n or p-type unipolar behavior, tunable by electrostatic and/or chemical doping, with excellent OFF-state performance and a steep subthreshold swing (S =63 mV/dec). The device design allows for aggressive oxide thickness and gate length scaling while maintaining the desired device characteristics.
In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By applying 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), low ON-state resistance of 3.2 ohm.mm and high field-effect mobility of 229 cm2/Vs are achieved with a record high drain current of 532 mA/mm at a moderate channel length of 1.5 {mu}m.
This work reports the design and analysis of an n-type tunneling field effect transistor based on InN. The tunneling current is evaluated from the fundamental principles of quantum mechanical tunneling and semiclassical carrier transport. We investig ate the RF performance of the device. High transconductance of 2 mS/um and current gain cut-off frequency of around 460 GHz makes the device suitable for THz applications. A significant reduction in gate to drain capacitance is observed under relatively higher drain bias. In this regard, the avalanche breakdown phenomenon in highly doped InN junctions is analyzed quantitatively for the first time and is compared to that of Si and InAs.
156 - Enze Zhang , Yibo Jin , Xiang Yuan 2015
Atomically-thin two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, we report on the fabrication of ReS2 field-effect t ransistors via the encapsulation of ReS2 nanosheets in a high-k{appa} Al2O3 dielectric environment. Low-temperature transport measurements allowed us to observe a direct metal-to-insulator transition originating from strong electron-electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate-tunable photoresponsivity up to 16.14 A/W and external quantum efficiency reaching 3,168 %, showing a competitive device performance to those reported in graphene, MoSe2, GaS and GaSe-based photodetectors. Our study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr ical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا