ﻻ يوجد ملخص باللغة العربية
In this short note, we prove that for a $C^*$-algebra $aa$ generated by $n$ elements, $M_{k}(tilde{aa})$ is generated by $k$ mutually unitarily equivalent and almost mutually orthogonal projections for any $kge de(n)=minbig{kinmathbb N,|,(k-1)(k-2)ge 2nbig}$. Then combining this result with recent works of Nagisa, Thiel and Winter on the generators of $C^*$--algebras, we show that for a $C^*$-algebra $aa$ generated by finite number of elements, there is $dge 3$ such that $M_d(tilde A)$ is generated by three mutually unitarily equivalent and almost mutually orthogonal projections. Furthermore, for certain separable purely infinite simple unital $C^*$--algebras and $AF$--algebras, we give some conditions that make them be generated by three mutually unitarily equivalent and almost mutually orthogonal projections.
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra
Let A be a C*-algebra and A** its enveloping von Neumann algebra. C. Akemann suggested a kind of non-commutative topology in which certain projections in A** play the role of open sets. The adjectives open, closed, compact, and relatively compact all
Given a normal subgroup bundle $mathcal A$ of the isotropy bundle of a groupoid $Sigma$, we obtain a twisted action of the quotient groupoid $Sigma/mathcal A$ on the bundle of group $C^*$-algebras determined by $mathcal A$ whose twisted crossed produ
From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised
In this work we characterise the C*-algebras A generated by projections with the property that every pair of projections in A has positive angle, as certain extensions of abelian algebras by algebras of compact operators. We show that this property i