ﻻ يوجد ملخص باللغة العربية
Given a normal subgroup bundle $mathcal A$ of the isotropy bundle of a groupoid $Sigma$, we obtain a twisted action of the quotient groupoid $Sigma/mathcal A$ on the bundle of group $C^*$-algebras determined by $mathcal A$ whose twisted crossed product recovers the groupoid $C^*$-algebra $C^*(Sigma)$. Restricting to the case where $mathcal A$ is abelian, we describe $C^*(Sigma)$ as the $C^*$-algebra associated to a $mathbf T$-groupoid over the tranformation groupoid obtained from the canonical action of $Sigma/mathcal A$ on the Pontryagin dual space of $mathcal A$. We give some illustrative examples of this result.
Given a C*-algebra $A$, a discrete abelian group $X$ and a homomorphism $Theta: Xto$ Out$A$ defining the dual action group $Gammasubset$ aut$A$, the paper contains results on existence and characterization of Hilbert ${A,Gamma}$, where the action is
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, am
In this paper we show that for an almost finite minimal ample groupoid $G$, its reduced $mathrm{C}^*$-algebra $C_r^*(G)$ has real rank zero and strict comparison even though $C_r^*(G)$ may not be nuclear in general. Moreover, if we further assume $G$
In this short note we prove that the reduced group C*-algebra of a locally compact group admits a non-zero trace if and only if the amenable radical of the group is open. This completely answers a question raised by Forrest, Spronk and Wiersma.
Let $G$ be a locally compact group. It is not always the case that its reduced C*-algebra $C^*_r(G)$ admits a tracial state. We exhibit closely related necessary and sufficient conditions for the existence of such. We gain a complete answer when $G$