ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearly relatively compact projections in operator algebras

138   0   0.0 ( 0 )
 نشر من قبل Lawrence Brown
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Lawrence G. Brown




اسأل ChatGPT حول البحث

Let A be a C*-algebra and A** its enveloping von Neumann algebra. C. Akemann suggested a kind of non-commutative topology in which certain projections in A** play the role of open sets. The adjectives open, closed, compact, and relatively compact all can be applied to projections in A**. Two operator inequalities were used by Akemann in connection with compactness. Both of these inequalities are equivalent to compactness for a closed projection in A**, but only one is equivalent to relative compactness for a general projection. A third operator inequality, also related to compactness, was used by the author. It turns out that the study of all three inequalities can be unified by considering a numerical invariant which is equivalent to the distance of a projection from the set of relatively compact projections. Since the subject concerns the relation between a projection and its closure, Tomitas concept of regularity of projections seems relevant, and some results and examples on regularity are also given. A few related results on semicontinuity are also included.



قيم البحث

اقرأ أيضاً

92 - Daniele Mundici 2018
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra k ppreceq q/mathfrak ppreceq (1- q)/mathfrak p$ or $p/mathfrak psucceq q/mathfrak p succeq (1-q)/mathfrak p.$ We prove that $p$ is central iff $[p]$ is $sqsubseteq$-minimal iff $[p]$ is a characteristic element in $K_0(A)$. If, in addition, $A$ is liminary, then each extremal state of $K_0(A)$ is discrete, $K_0(A)$ has general comparability, and $A$ comes equipped with a centripetal transformation $[p]mapsto [p]^Game$ that moves $p$ towards the center. The number $n(p) $ of $Game$-steps needed by $[p]$ to reach the center has the monotonicity property $[p]sqsubseteq [q]Rightarrow n(p)leq n(q).$ Our proofs combine the $K_0$-theoretic version of Elliotts classification, the categorical equivalence $Gamma$ between MV-algebras and unital $ell$-groups, and L os ultraproduct theorem for first-order logic.
97 - Shanwen Hu , Yifeng Xue 2012
In this short note, we prove that for a $C^*$-algebra $aa$ generated by $n$ elements, $M_{k}(tilde{aa})$ is generated by $k$ mutually unitarily equivalent and almost mutually orthogonal projections for any $kge de(n)=minbig{kinmathbb N,|,(k-1)(k-2)ge 2nbig}$. Then combining this result with recent works of Nagisa, Thiel and Winter on the generators of $C^*$--algebras, we show that for a $C^*$-algebra $aa$ generated by finite number of elements, there is $dge 3$ such that $M_d(tilde A)$ is generated by three mutually unitarily equivalent and almost mutually orthogonal projections. Furthermore, for certain separable purely infinite simple unital $C^*$--algebras and $AF$--algebras, we give some conditions that make them be generated by three mutually unitarily equivalent and almost mutually orthogonal projections.
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Aglers theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
94 - G. K. Eleftherakis 2017
We define a relation < for dual operator algebras. We say that B < A if there exists a projection p in A such that B and pAp are Morita equivalent in our sense. We show that < is transitive, and we investigate the following question: If A < B and B < A, then is it true that A and B are stably isomorphic? We propose an analogous relation < for dual operator spaces, and we present some properties of < in this case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا