ﻻ يوجد ملخص باللغة العربية
Nonlinear wave run-up on the beach caused by harmonic wave maker located at some distance from the shore line is studied experimentally. It is revealed that under certain wave excitation frequencies a significant increase in run-up amplification is observed. It is found that this amplification is due to the excitation of resonant mode in the region between the shoreline and wave maker. Frequency and magnitude of the maximum amplification are in good correlation with the numerical calculation results represented in the paper (T.S. Stefanakis et al. PRL (2011)). These effects are very important for understanding the nature of rougue waves in the coastle zone.
The problem of tsunami wave run-up on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. We present an analysis of the run-up characteristics for various shapes of the incoming symmetrical solitary
Jets coexist with planetary scale waves in the turbulence of planetary atmospheres. The coherent component of these structures arises from cooperative interaction between the coherent structures and the incoherent small-scale turbulence in which they
We consider a general multicomponent (2+1)-dimensional long-wave--short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long-wave in
The problem of the long wave runup on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. The key and novel moment here is the analysis of the runup of a certain class of asymmetric waves, the face s
Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions drivers: population p, standard of living