ﻻ يوجد ملخص باللغة العربية
We study the classical dynamics in a generic first-order quantum phase transition between the U(5) and SU(3) limits of the interacting boson model. The dynamics is chaotic, of Henon-Heiles type, in the spherical phase and is regular, yet sensitive to local degeneracies, in the deformed phase. Both types of dynamics persist in the coexistence region resulting in a divided phase space.
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robu
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical si
The work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection with fluctuations theorems. Here we develop a semiclassical approximation to the work distribution for a quench process in chaotic systems.