ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices

459   0   0.0 ( 0 )
 نشر من قبل Roman Gorbachev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images.



قيم البحث

اقرأ أيضاً

Filming and controlling plasmons at buried interfaces with nanometer (nm) and femtosecond (fs) resolution has yet to be achieved and is critical for next generation plasmonic/electronic devices. In this work, we use light to excite and shape a plasmo nic interference pattern at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is filmed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at approximately 0.3c, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. These results, demonstrating dynamical imaging with PINEM, pave the way for the fs/nm visualization and control of plasmonic fields in advanced heterostructures based on novel 2D materials such as graphene, MoS$_2$, and ultrathin metal films.
The semiconductor-metal junction is one of the most critical factors for high performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despi te numerous studies concerning contact resistance in 2D semiconductors, the exact nature of the buried interface under a three-dimensional (3D) metal remains unclear. Herein, we report the direct measurement of electrical and optical responses of 2D semiconductor-metal buried interfaces using a recently developed metal-assisted transfer technique to expose the buried interface which is then directly investigated using scanning probe techniques. We characterize the spatially varying electronic and optical properties of this buried interface with < 20 nm resolution. To be specific, potential, conductance and photoluminescence at the buried metal/MoS2 interface are correlated as a function of a variety of metal deposition conditions as well as the type of metal contacts. We observe that direct evaporation of Au on MoS2 induces a large strain of ~5% in the MoS2 which, coupled with charge transfer, leads to degenerate doping of the MoS2 underneath the contact. These factors lead to improvement of contact resistance to record values of 138 kohm-um, as measured using local conductance probes. This approach was adopted to characterize MoS2-In/Au alloy interfaces, demonstrating contact resistance as low as 63 kohm-um. Our results highlight that the MoS2/Metal interface is sensitive to device fabrication methods, and provides a universal strategy to characterize buried contact interfaces involving 2D semiconductors.
In this paper we present a comprehensive model for the tunneling current of the metal-insulator-graphene heterostructure, based on the Bardeen Transfer Hamiltonian method, of the metal-insulator-graphene heterostructure. As a particular case we have studied the metal-graphene junction, unveiling the role played by different electrical and physical parameters in determining the differential contact resistance.
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe rior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.
The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا