ترغب بنشر مسار تعليمي؟ اضغط هنا

High performance solar cells based on graphene-GaAs heterostructures

187   0   0.0 ( 0 )
 نشر من قبل Shisheng Lin SSLIN
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is superior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.



قيم البحث

اقرأ أيضاً

We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use the random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the plasmon frequencies and damping rates depend considerably on interlayer correlation parameters, electron densities and dielectric constants of the contacting media.
The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates.
154 - S. Boyn , S. Girod , V. Garcia 2014
In tunnel junctions with ferroelectric barriers, switching the polarization direction modifies the electrostatic potential profile and the associated average tunnel barrier height. This results in strong changes of the tunnel transmission and associa ted resistance. The information readout in ferroelectric tunnel junctions (FTJs) is thus resistive and non-destructive, which is an advantage compared to the case of conventional ferroelectric memories (FeRAMs). Initially, endurance limitation (i.e. fatigue) was the main factor hampering the industrialization of FeRAMs. Systematic investigations of switching dynamics for various ferroelectric and electrode materials have resolved this issue, with endurance now reaching $10^{14}$ cycles. Here we investigate data retention and endurance in fully patterned submicron Co/BiFeO$_3$/Ca$_{0.96}$Ce$_{0.04}$MnO$_3$ FTJs. We report good reproducibility with high resistance contrasts and extend the maximum reported endurance of FTJs by three orders of magnitude ($4times10^6$ cycles). Our results indicate that here fatigue is not limited by a decrease of the polarization or an increase of the leakage but rather by domain wall pinning. We propose directions to access extreme and intermediate resistance states more reliably and further strengthen the potential of FTJs for non-volatile memory applications.
Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies of collective behavior driven by inter-layer Coulomb coupling. Here we report heterostructures comprising a single-laye r (or bilayer) graphene carrying a fluid of massless (massive) chiral carriers, and a quantum well created in GaAs 31.5 nm below the surface, supporting a high-mobility two-dimensional electron gas. These are a new class of double-layer devices composed of spatially-separated electron and hole fluids. We find that the Coulomb drag resistivity significantly increases for temperatures below 5-10 K, following a logarithmic law. This anomalous behavior is a signature of the onset of strong inter-layer correlations, compatible with the formation of a condensate of permanent excitons. The ability to induce strongly-correlated electron-hole states paves the way for the realization of coherent circuits with minimal dissipation and nanodevices including analog-to-digital converters and topologically protected quantum bits.
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definit ion of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions presents a significant challenge in quantum device development. We report synchrotron x-ray nanodiffraction measurements combined with dynamical x-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04 deg. and strain on the order of 10^-4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا