ترغب بنشر مسار تعليمي؟ اضغط هنا

Atacama Compact Array Observations of the Pulsar-Wind Nebula of SNR 0540-69.3

111   0   0.0 ( 0 )
 نشر من قبل Peter Lundqvist
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of the pulsar-wind nebula (PWN) region ofSNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array (ATCA) at 3 cm. For 1.449 - 233.50 GHz we obtain a synchrotron spectrum $F_{ u} propto u^{-alpha_{ u}}$, with the spectral index $alpha_{ u} = 0.17pm{0.02}$. To conclude how this joins the synchrotron spectrum at higher frequencies we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $alpha_{ u} = 0.87^{+0.08}_{-0.10}$. There is room for $2.5times10^{-3}$ solar masses of dust with temperature $sim 55$ K if there are dual breaks in the synchrotron spectrum, one around $sim 9times10^{10}$ Hz, and another at $sim 2times10^{13}$ Hz. The spectral index then changes at $sim 9times10^{10}$ Hz from $alpha_{ u} = 0.14pm0.07$ in the radio, to $alpha_{ u} = 0.35^{-0.07}_{+0.05}$ in the millimetre to far-IR range. The ACA Band 6 data marginally resolves the PWN. In particular, the strong emission 1.5 south-west of the pulsar, seen at other wavelengths, and resolved in the 3-cm data with its 0.8 spatial resolution, is also strong in the millimeter range. The ACA data clearly reveal the supernova remnant shell 20-35 arcsec west of the pulsar, and for the shell we derive $alpha_{ u} = 0.64pm{0.05}$ for the range $8.6-145$~GHz.



قيم البحث

اقرأ أيضاً

We have used the ESO NTT/EMMI and VLT/FORS1 instruments to examine the LMC supernova remnant 0540-69.3 as well as its pulsar (PSR B0540-69) and pulsar-powered nebula in the optical range.Spectroscopic observations of the remnant covering the range of 3600-7350 A centered on the pulsar produced results consistent with those of Kirshner et al. (1989), but also revealed many new emission lines. The most important are [Ne III] 3869, 3967 and Balmer lines of hydrogen. In both the central part of the remnant, as well as in nearby H II regions, the [O III] temperature is higher than about 20 000 K, but lower than previously estimated. For PSR B0540-69, previous optical data are mutually inconsistent: HST/FOS spectra indicate a significantly higher absolute flux and steeper spectral index than suggested by early time-resolved groundbased UBVRI photometry. We show that the HST and VLT spectroscopic data for the pulsar have more then about 50% nebular contamination, and that this is the reason for the previous difference. Using HST/WFPC2 archival images obtained in various bands from the red part of the optical to the NUV range we have performed an accurate photometric study of the pulsar, and find that the spectral energy distribution of the pulsar emission has a negative slope with 1.07 +/- 0.2. This is steeper than derived from previous UBVRI photometry, and also different from the almost flat spectrum of the Crab pulsar. We also estimate that the proper motion of the pulsar is 4.9 +/- 2.3 mas/yr, corresponding to a transverse velocity of 1190 +/- 560 km/s, projected along the southern jet of the pulsar nebula.
The distribution of ejecta in young supernova remnants offers a powerful observational probe of their explosions and progenitors. Here we present a 3D reconstruction of the ejecta in SNR 0540-69.3, which is an O-rich remnant with a pulsar wind nebula located in the LMC. We use observations from VLT/MUSE to study Hbeta, [O III] lambda lambda 4959, 5007, Halpha, [S II] lambda lambda 6717, 6731, [Ar III] lambda 7136 and [S III] lambda 9069 emission lines. This is complemented by 2D spectra from VLT/X-shooter, which also cover [O II] lambda lambda 3726, 3729 and [Fe II] lambda 12567. We identify three main emission components: (i) Clumpy rings in the inner nebula (<1000 km/s) with similar morphologies in all lines; (ii) Faint extended [O III] emission dominated by an irregular ring-like structure with radius ~1600 km/s and inclination ~40 dg, but with maximal velocities reaching ~3000 km/s; and (iii) A blob of Halpha and Hbeta located southeast of the pulsar at velocities ~1500-3500 km/s. We analyze the geometry using a clump-finding algorithm and use the clumps in the [O III] ring to estimate an age of 1146 pm 116 years. The observations favor an interpretation of the [O III] ring as ejecta, while the origin of the H-blob is more uncertain. An alternative explanation is that it is the blown-off envelope of a binary companion. From the detection of Balmer lines in the innermost ejecta we confirm that SNR 0540 was a Type II supernova and that hydrogen was mixed down to low velocities in the explosion.
136 - B. M. Gaensler MIT 2001
We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) within the supernova remnant G0.9+0.1. At Chandras high resolution, the PWN has a clear axial symmetry; a faint X-ray point source lying along the symmetry axi s possibly corresponds to the pulsar itself. We argue that the nebular morphology can be explained in terms of a torus of emission in the pulsars equatorial plane and a jet directed along the pulsar spin axis, as is seen in the X-ray nebulae powered by other young pulsars. A bright clump of emission within the PWN breaks the axisymmetry and may correspond to an intermediate-latitude feature in the pulsar wind.
We present high spatial resolution optical imaging and polarization observations of the PSR B0540-69.3 and its highly dynamical pulsar wind nebula (PWN) performed with HST, and compare them with X-ray data obtained with the Chandra X-ray Observatory. We have studied the bright region southwest of the pulsar where a bright blob is seen in 1999. We show that it may be a result of local energy deposition around 1999, and that the emission from this then faded away. Polarization data from 2007 show that the polarization properties show dramatic spatial variations at the 1999 blob position arguing for a local process. Several other positions along the pulsar-blob orientation show similar changes in polarization, indicating previous recent local energy depositions. In X-rays, the spectrum steepens away from the blob position, faster orthogonal to the pulsar-blob direction than along this axis of orientation. This could indicate that the pulsar-blob orientation is an axis along where energy in the PWN is mainly injected, and that this is then mediated to the filaments in the PWN by shocks. We highlight this by constructing an [S II]-to-[O III]-ratio map. We argue, through modeling, that the high [S II]/[O III] ratio is not due to time-dependent photoionization caused by possible rapid Xray emission variations in the blob region. We have also created a multiwavelength energy spectrum for the blob position showing that one can, to within 2sigma, connect the optical and X-ray emission by a single power law. We obtain best power-law fits for the X-ray spectrum if we include extra oxygen, in addition to the oxygen column density in the interstellar gas of the Large Magellanic Cloud and the Milky Way. This oxygen is most naturally explained by the oxygen-rich ejecta of the supernova remnant. The oxygen needed likely places the progenitor mass in the 20 - 25 Msun range.
150 - G. G. Pavlov 2010
Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20 long central (axial) tail directed opposite to the pulsars proper motion and two 2 long, bent lateral (outer ) tails. Here we report on a deeper (78 ks) Chandra observation and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50 (i.e., 0.06 d_{250} pc) from the pulsar. It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L_{0.3-8 keV} ~ 3times 10^{29} d_{250}^2 erg/s, is lower than the pulsars magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index ~ 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind; its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either (1) a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or (2) polar outflows from the pulsar bent by the ram pressure from the ISM. In the former case, the axial tail may be a jet emanating along the pulsars spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked pulsar wind collimated by the ram pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا