ترغب بنشر مسار تعليمي؟ اضغط هنا

Expansion and Brightness Changes in the Pulsar-Wind Nebula in the Composite Supernova Remnant Kes 75

307   0   0.0 ( 0 )
 نشر من قبل Stephen Reynolds
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new Chandra X-ray observations of the shell supernova remnant (SNR) Kes 75 (G29.7-0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across the four epochs, 2000, 2006, 2009, and 2016. We find an expansion rate between 2000 and 2016 of the NW edge of the PWN of 0.249% +/- 0.023% yr^{-1}, for an expansion age R/(dR/dt) of 400 +/- 40 years and an expansion velocity of about 1000 km s^{-1}. We suggest that the PWN is expanding into an asymmetric nickel bubble in a conventional Type IIP supernova. Some acceleration of the PWN expansion is likely, giving a true age of 480 +/- 50 years. The pulsars birth luminosity was larger than the current value by a factor of 3 -- 8, while the initial period was within a factor of 2 of its current value. We confirm directly that Kes 75 contains the youngest known PWN, and hence youngest known pulsar. The pulsar PSR J1846-0258 has a spindown-inferred magnetic field of 5 x 10^{13} G; in 2006 it emitted five magnetar-like short X-ray bursts, but its spindown luminosity has not changed significantly. However, the flux of the PWN has decreased by about 10% between 2009 and 2016, almost entirely in the northern half. A bright knot has declined by 30% since 2006. During this time, the photon indices of the power-law models did not change. This flux change is too rapid to be due to normal PWN evolution in one-zone models.

قيم البحث

اقرأ أيضاً

71 - E. V. Gotthelf 2020
We present broad-band X-ray spectroscopy of the energetic components that make up the supernova remnant (SNR) Kesteven 75 using concurrent 2017 Aug 17-20 XMM-Newton and NuSTAR observations, during which the pulsar PSR J1846-0258 is found to be in the quiescent state. The young remnant hosts a bright pulsar wind nebula powered by the highly-energetic (Edot = 8.1E36 erg/s) isolated, rotation-powered pulsar, with a spin-down age of only P/2Pdot ~ 728 yr. Its inferred magnetic field (Bs = 4.9E13 G) is the largest known for these objects, and is likely responsible for intervals of flare and burst activity, suggesting a transition between/to a magnetar state. The pulsed emission from PSR J1846-0258 is well-characterized in the 2-50 keV range by a power-law model with photon index Gamma_PSR = 1.24+/-0.09 and a 2-10 keV unabsorbed flux of (2.3+/-0.4)E-12 erg/s/cm^2). We find no evidence for an additional non-thermal component above 10 keV in the current state, as would be typical for a magnetar. Compared to the Chandra pulsar spectrum, the intrinsic pulsed fraction is 71+/-16% in 2-10 keV band. A power-law spectrum for the PWN yields Gamma_PWN = 2.03+/-0.03 in the 1-55 keV band, with no evidence of curvature in this range, and a 2-10 keV unabsorbed flux (2.13+/-0.02)E-11 erg/s/cm^2. The NuSTAR data reveal evidence for a hard X-ray component dominating the SNR spectrum above 10 keV which we attribute to a dust-scattered PWN component. We model the dynamical and radiative evolution of the Kes 75 system to estimate the birth properties of the neutron star, the energetics of its progenitor, and properties of the PWN. This suggests that the progenitor of Kes 75 was originally in a binary system which transferred most its mass to a companion before exploding.
We present the results of detailed spatial and spectral analysis of the pulsar wind nebula (PWN) in supernova remnant Kes 75 (G29.7-0.3) using a deep exposure with Chandra X-ray observatory. The PWN shows a complex morphology with clear axisymmetric structure. We identified a one-sided jet and two bright clumps aligned with the overall nebular elongation, and an arc-like feature perpendicular to the jet direction. Further spatial modeling with a torus and jet model indicates a position angle $207arcdegpm8 arcdeg$ for the PWN symmetry axis. We interpret the arc as an equatorial torus or wisp and the clumps could be shock interaction between the jets and the surrounding medium. The lack of any observable counter jet implies a flow velocity larger than 0.4c. Comparing to an archival observation 6 years earlier, some small-scale features in the PWN demonstrate strong variability: the flux of the inner jet doubles and the peak of the northern clump broadens and shifts 2 outward. In addition, the pulsar flux increases by 6 times, showing substantial spectral softening from $Gamma$=1.1 to 1.9 and an emerging thermal component which was not observed in the first epoch. The changes in the pulsar spectrum are likely related to the magnetar-like bursts of the pulsar that occurred 7 days before the Chandra observation, as recently reported from RXTE observations.
The Large Magellanic Cloud (LMC) is rich in supernova remnants (SNRs) which can be investigated in detail with radio, optical and X-ray observations. SNR J0453-6829 is an X-ray and radio-bright remnant in the LMC, within which previous studies reveal ed the presence of a pulsar wind nebula (PWN), making it one of the most interesting SNRs in the Local Group of galaxies. We study the emission of SNR J0453-6829 to improve our understanding of its morphology, spectrum, and thus the emission mechanisms in the shell and the PWN of the remnant. We obtained new radio data with the Australia Telescope Compact Array and analysed archival XMM-Newton observations of SNR J0453-6829. We studied the morphology of SNR J0453-6829 from radio, optical and X-ray images and investigated the energy spectra in the different parts of the remnant. Our radio results confirm that this LMC SNR hosts a typical PWN. The prominent central core of the PWN exhibits a radio spectral index alpha_Core of -0.04+/-0.04, while in the rest of the SNR shell the spectral slope is somewhat steeper with alpha_Shell = -0.43+/-0.01. We detect regions with a mean polarisation of P ~ (12+/-4)% at 6 cm and (9+/-2)% at 3 cm. The full remnant is of roughly circular shape with dimensions of (31+/-1) pc x (29+/-1) pc. The spectral analysis of the XMM-Newton EPIC and RGS spectra allowed us to derive physical parameters for the SNR. Somewhat depending on the spectral model, we obtain for the remnant a shock temperature of around 0.2 keV and estimate the dynamical age to 12000-15000 years. Using a Sedov model we further derive an electron density in the X-ray emitting material of 1.56 cm^-3, typical for LMC remnants, a large swept-up mass of 830 solar masses, and an explosion energy of 7.6 x 10^50 erg. These parameters indicate a well evolved SNR with an X-ray spectrum dominated by emission from the swept-up material.
Of the 30 or so Galactic magnetars, about 8 are in supernova remnants (SNRs). One of the most extreme magnetars, 1E 1841-045, is at the center of the SNR Kes 73 (G27.4+0.0), whose age is uncertain. We measure its expansion using three Chandra observa tions over 15 yr, obtaining a mean rate of 0.023% +/- 0.002% per yr. For a distance of 8.5 kpc, we obtain a shell velocity of 1100 km/s and infer a blast-wave speed of 1400 km/s. For Sedov expansion into a uniform medium, this gives an age of 1800 yr. Derived emission measures imply an ambient density of about 2 cm$^{-3}$ and an upper limit on the swept-up mass of about 70 solar masses, with lower limits of tens of solar masses, confirming that Kes 73 is in an advanced evolutionary stage. Our spectral analysis shows no evidence for enhanced abundances as would be expected from a massive progenitor. Our derived total energy is $1.9 times 10^{51}$ erg, giving a very conservative lower limit to the magnetars initial period of about 3 ms, unless its energy was lost by non-electromagnetic means. We see no evidence of a wind-blown bubble as would be produced by a massive progenitor, or any evidence that the progenitor of Kes 73/1E 1841-045 was anything but a normal red supergiant producing a Type IIP supernova, though a short-lived stripped-envelope progenitor cannot be absolutely excluded. Kes 73s magnetar thus joins SGR 1900+14 as magnetars resulting from relatively low-mass progenitors.
92 - T.A. Lozinskaya 2005
We investigated the kinematics of the pulsar wind nebula (PWN) associated with PSR B1951+32 in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100-200km/s, we detected weak high-velocity features in the H-alpha line at least up to velocities of 400-450km/s. We analyzed the morphology of the PWN in the H-alpha, [SII], and [OIII] lines using HST data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [OIII] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60 degrees) inclination of the pulsars velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice higher than its tangential velocity, i.e., it reaches ~500 km/s, and PSR B1951+32 is the first pulsar whose line-of-sight velocity (of about 400 km/s) has been estimated from the PWN observations. The shell-like H-alpha-structures outside the bow shock front in the east and the west may be associated with both the pulsars jets and the pulsar-wind breakthrough due to the layered structure of the extended CTB 80 shell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا