ﻻ يوجد ملخص باللغة العربية
Nuclear resonant forward scattering (NFS) and nuclear inelastic scattering (NIS) of synchrotron radiation are fairly recent spectroscopic methods for the investigation of complexes containing Mossbauer-active transition metal ions. NFS, which can be regarded as Mossbauer spectroscopy in the time domain, overcomes some limitations of conventional Mossbauer spectroscopy as has been demonstrated especially for bioinorganic compounds. NIS extends the energy range of conventional Mossbauer spectroscopy to the range of molecular vibrations. Since NIS is sensitive only to the mean-square displacement of Mossbauer nuclei it can be used as site-selective vibrational spectroscopy. It complements usefully comparable techniques such as IR or Raman spectroscopy. Examples are given for applications to spin crossover complexes, nitroprusside compounds, heme model complexes and myoglobin.
A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Moessbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture
Nuclear inelastic scattering (NIS) of synchrotron radiation has been used to investigate the dynamics of tin ions chelated by DNA. Theoretical NIS spectra have been simulated with the help of density functional theory (DFT) calculations using 12 mode
Observations of the properties of dense molecular clouds are critical in understanding the process of star-formation. One of the most important, but least understood, is the role of the magnetic fields. We discuss the possibility of using high-resolu
The structure of the light-induced metastable state SII of Na2[Fe(CN)5NO]$cdot$2H2O 14 was investigated by transmission Mossbauer spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear inelastic scattering (NIS) at 98 K using sy
Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron em