ترغب بنشر مسار تعليمي؟ اضغط هنا

Mossbauer studies of the peculiar magnetism in parent compounds of the iron-based superconductors

240   0   0.0 ( 0 )
 نشر من قبل Krzysztof Ruebenbauer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Moessbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture of the spin-polarized covalent bonds. For the 122 compounds a longitudinal spin density wave (SDW) develops. In the case of the EuFe2As2 a divalent europium orders antiferromagnetically at much lower temperature as compared to the onset of SDW. These two magnetic systems remain almost uncoupled one to another. For the non-stoichiometric Fe(1+x)Te parent of the 11 family one has a transversal SDW and magnetic order of the interstitial iron with relatively high and localized magnetic moments. These two systems are strongly coupled one to another. For the grand parent of the iron-based superconductors FeAs one observes two mutually orthogonal phase-related transversal SDW on the iron sites. There are two sets of such spin arrangements due to two crystallographic iron sites. The FeAs exhibits the highest covalency among compounds studied, but it has still a metallic character.



قيم البحث

اقرأ أيضاً

Herewith, we review the available experimental data of thermoelectric transport properties of iron-based superconductors and parent compounds. We discuss possible physical mechanisms into play in determining the Seebeck effect, from whence one can ex tract information about Fermi surface reconstruction and Lifshitz transitions, multiband character, coupling of charge carriers with spin excitations and its relevance in the unconventional superconducting pairing mechanism, nematicity, quantum critical fluctuations close to the optimal doping for superconductivity, correlation. Additional information is obtained from the analysis of the Nernst effect, whose enhancement in parent compounds must be related partially to multiband transport and low Fermi level, but mainly to the presence of Dirac cone bands at the Fermi level. In the superconducting compounds, large Nernst effect in the normal state is explained in terms of fluctuating precursors of the spin density wave state, while in the superconducting state it mirrors the usual vortex liquid dissipative regime. A comparison between the phenomenology of thermoelectric behavior of different families of iron-based superconductors and parent compounds allows to evidence the key differences and analogies, thus providing clues on the rich and complex physics of these fascinating unconventional superconductors.
57Fe and 151Eu Moessbauer spectra were obtained versus temperature for Eu0.57Ca0.43Fe2As2 compound with 3d and 4f magnetic order and Eu0.73Ca0.27(Fe0.87Co0.13)2As2 re-entrant superconductor, where the finite resistivity reappears while approaching th e ground state. They were compared with previously obtained spectra for parent compounds EuFe2As2 and CaFe2As2. It was found that substitution beyond the Fe-As layers does not lead to the rotation (canting) of the Eu2+ magnetic moments and does not generate Eu3+ states. On the other hand, re-entrant superconductor exhibits rotation (canting) of the Eu2+ moments on the c-axis of the unit cell leading to the transferred hyperfine magnetic field on iron nuclei. Divalent europium orders magnetically within the bulk of the re-entrant superconducting phase. The re-entrant superconductor remains in the inhomogeneous state close to the ground state with about 27 % of the volume being free of 3d magnetism, while the remainder exhibits weak spin density wave. Those two regions slightly differ by the electric field gradient and electron density on iron nuclei.
Moessbauer spectroscopy measurements were performed for the temperature range between 4.2 K and 300 K in a transmission geometry applying 14.41-keV resonant line in 57Fe for PrFeAsO the latter being a parent compound of the iron-based superconductors belonging to the 1111 family. It was found that an itinerant 3d magnetic order develops at about 165 K and it is accompanied by an orthorhombic distortion of the chemical unit cell. A complete longitudinal 3d incommensurate spin density wave (SDW) order develops at about 140 K. Transferred hyperfine magnetic field generated by the praseodymium magnetic order on iron nuclei is seen at 12.8 K and below, i.e., below magnetic order of praseodymium magnetic moments. It is oriented perpendicular to the field of SDW on iron nuclei. The shape of SDW is almost rectangular at low temperatures and it transforms into roughly triangular form around nematic transition at about 140 K. Praseodymium magnetic order leads to the substantial enhancement of SDW due to the large orbital contribution to the magnetic moment of praseodymium. A transferred field indicates presence of strong magnetic susceptibility anisotropy in the [b-c] plane while following rotation of praseodymium magnetic moments in this plane with lowering temperature. It was found that nematic phase region is a region of incoherent spin density wavelets typical for a critical region.
142 - D. Hsieh , Y. Xia , L. Wray 2008
Like high Tc cuprates, the newly discovered iron based superconductors lie in close proximity to a magnetically ordered parent phase. However, while the magnetic order in parent cuprates is known to derive from a spin-spin local superexchange interac tion, a plethora of experiments including neutron scattering have so far been unable to conclusively resolve whether a local moment Heisenberg description applies in parent iron based compounds, or whether magnetism arises from a collective SDW order instability. These two alternatives can in principle be distinguished by measuring the low energy momentum-resolved bulk-representative electronic structure of the magnetically ordered phase. Using a combination of polarization dependent ARPES and STM, we have isolated the complete low-lying bulk representative electronic structure of magnetic SrFe2As2 with d-orbital symmetry specificity for the first time. Our results show that while multiple bands with different iron d-orbital character indeed contribute to charge transport, only one pair of bands with opposite mirror symmetries microscopically exhibit an itinerant SDW instability with energy scales on the order of 50 meV. The orbital resolved band topology below T_SDW point uniquely to a nesting driven band hybridization mechanism of the observed antiferromagnetism in the iron pnictides, and is consistent with an unusual anisotropic nodal-density-wave state. In addition, these results place strong constraints on many theories of pnictide superconductivity that require a strict local moment magnetism starting point.
323 - Wei Li , Hao Ding , Zhi Li 2012
We elucidate the existing controversies in the newly discovered K-doped iron selenide (KxFe2-ySe2-z) superconductors. The stoichiometric KFe2Se2 with surd2timessurd2 charge ordering was identified as the parent compound of KxFe2-ySe2-z superconductor using scanning tunneling microscopy and spectroscopy. The superconductivity is induced in KFe2Se2 by either Se vacancies or interacting with the anti-ferromagnetic K2Fe4Se5 compound. Totally four phases were found to exist in KxFe2-ySe2-z: parent compound KFe2Se2, superconducting KFe2Se2 with surd2timessurd5 charge ordering, superconducting KFe2Se2-z with Se vacancies and insulating K2Fe4Se5 with surd5timessurd5 Fe vacancy order. The phase separation takes place at the mesoscopic scale under standard molecular beam epitaxy condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا