ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose-Einstein condensation into non-equilibrium states studied by condensate focusing

153   0   0.0 ( 0 )
 نشر من قبل Wolf von Klitzing
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the formation of Bose-Einstein condensates into non-equilibrium states. Our condensates are much longer than equilibrium condensates with the same number of atoms, show strong phase fluctuations, and have a dynamical evolution similar to that of quadrupole shape oscillations of regular condensates. The condensates emerge in elongated traps as the result of local thermalization when the nucleation time is short compared to the axial oscillation time. We introduce condensate focusing as a powerful method to extract the phase-coherence length of Bose-Einstein condensates.


قيم البحث

اقرأ أيضاً

We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig h wave numbers, and study propagation of the turbulent spectrum toward the low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for which good agreement with the wave turbulence results is found in terms of the main features of the previously discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent $x^* approx 1.24$ for the three-dimensional waveaction spectrum. We also study the regimes of very weak turbulence, when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary vortices.
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
We present a comprehensive analysis of critical behavior in the driven-dissipative Bose condensation transition in three spatial dimensions. Starting point is a microscopic description of the system in terms of a many-body quantum master equation, wh ere coherent and driven-dissipative dynamics occur on an equal footing. An equivalent Keldysh real time functional integral reformulation opens up the problem to a practical evaluation using the tools of quantum field theory. In particular, we develop a functional renormalization group approach to quantitatively explore the universality class of this stationary non-equilibrium system. Key results comprise the emergence of an asymptotic thermalization of the distribution function, while manifest non-equilibrium properties are witnessed in the response properties in terms of a new, independent critical exponent. Thus the driven-dissipative microscopic nature is seen to bear observable consequences on the largest length scales. The absence of two symmetries present in closed equilibrium systems - underlying particle number conservation and detailed balance, respectively - is identified as the root of this new non-equilibrium critical behavior. Our results are relevant for broad ranges of open quantum systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases.
We show that ideal Bose-Einstein condensation (BEC) in $d = 3$ dimensions is a non-classical critical second order phase transition with exponents $alpha = -1$, $beta = 1$, $gamma = 1$, $delta = 2$, $eta = 1$ and $ u = 1$, obeying all the scaling equ alities. These results are found with no approximations or assumptions. The previous exponents are a critical universality class on its own, different from the so-far accepted notion that BEC belongs to the Spherical Model universality class.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio us tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا