ﻻ يوجد ملخص باللغة العربية
Coherence is a defining feature of quantum condensates. These condensates are inherently multimode phenomena and in the macroscopic limit it becomes extremely difficult to resolve populations of individual modes and the coherence between them. In this work we demonstrate non-equilibrium Bose-Einstein condensation (BEC) of photons in a sculpted dye-filled microcavity, where threshold is found for $8pm 2$ photons. With this nanocondensate we are able to measure occupancies and coherences of individual energy levels of the bosonic field. Coherence of individual modes generally increases with increasing photon number, but at the breakdown of thermal equilibrium we observe multimode-condensation phase transitions wherein coherence unexpectedly decreases with increasing population, suggesting that the photons show strong inter-mode phase or number correlations despite the absence of a direct nonlinearity. Experiments are well-matched to a detailed non-equilibrium model. We find that microlaser and Bose-Einstein statistics each describe complementary parts of our data and are limits of our model in appropriate regimes, which informs the debate on the differences between the two.
We present a comprehensive analysis of critical behavior in the driven-dissipative Bose condensation transition in three spatial dimensions. Starting point is a microscopic description of the system in terms of a many-body quantum master equation, wh
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose ga
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig
To investigate the phenomenon of Bose-Einstein condensation in perfect crystals a hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system is employed, the hierarchy being obtained earlier by t