ﻻ يوجد ملخص باللغة العربية
We discuss the chiral phase diagram in the parameter space of lattice QCD with minimal-doubling fermions, which can be seen as lattice fermions with flavored chemical potential terms. We study strong-coupling lattice QCD with the Karsten-Wilczek formulation, which has one relevant parameter $mu_{3}$ as well as gauge coupling and a mass parameter. We find a nontrivial chiral phase structure with a second-order phase transition between chiral symmetric and broken phases. To capture the whole structure of the phase diagram, we study the related lattice Gross-Neveu model. The result indicates that the chiral phase transition also exists in the weak-coupling region. From these results we speculate on the $mu_{3}$-$g^{2}$ chiral phase diagram in lattice QCD with minimal-doubling fermions, and discuss their application to numerical simulations.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator
Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition fo
Recently a formulation of overlap fermions at finite density based on an analytic continuation of the sign function was proposed. We study this proposal by analyzing the energy and number densities for free fermions as a function of the chemical pote