ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamical quantities for overlap fermions with chemical potential

69   0   0.0 ( 0 )
 نشر من قبل Ludovit Liptak
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently a formulation of overlap fermions at finite density based on an analytic continuation of the sign function was proposed. We study this proposal by analyzing the energy and number densities for free fermions as a function of the chemical potential and the temperature. Our results show that overlap fermions with chemical potential give rise to the correct continuum behavior.

قيم البحث

اقرأ أيضاً

We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition fo r $beta = 1.9, mu_I = 0.2618, kappa=0.1388$ on $8^3times 4$ lattice volume We also present a result of the matrix reduction formula for the Wilson fermion.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
We study the finite temperature localization transition in the spectrum of the overlap Dirac operator. Simulating the quenched approximation of QCD, we calculate the mobility edge, separating localized and delocalized modes in the spectrum. We do thi s at several temperatures just above the deconfining transition and by extrapolation we determine the temperature where the mobility edge vanishes and localized modes completely disappear from the spectrum. We find that this temperature, where even the lowest Dirac eigenmodes become delocalized, coincides with the critical temperature of the deconfining transition. This result, together with our previously obtained similar findings for staggered fermions shows that quark localization at the deconfining temperature is independent of the fermion discretization, suggesting that deconfinement and localization of the lowest Dirac eigenmodes are closely related phenomena.
60 - Tatsuhiro Misumi 2012
We discuss the chiral phase diagram in the parameter space of lattice QCD with minimal-doubling fermions, which can be seen as lattice fermions with flavored chemical potential terms. We study strong-coupling lattice QCD with the Karsten-Wilczek form ulation, which has one relevant parameter $mu_{3}$ as well as gauge coupling and a mass parameter. We find a nontrivial chiral phase structure with a second-order phase transition between chiral symmetric and broken phases. To capture the whole structure of the phase diagram, we study the related lattice Gross-Neveu model. The result indicates that the chiral phase transition also exists in the weak-coupling region. From these results we speculate on the $mu_{3}$-$g^{2}$ chiral phase diagram in lattice QCD with minimal-doubling fermions, and discuss their application to numerical simulations.
We perform dynamical QCD simulations with $n_f=2$ overlap fermions by hybrid Monte-Carlo method on $6^4$ to $8^3times 16$ lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector c hanges. We use this new method to determine the topological susceptibility at various quark masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا