ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Magnon Gap in Bilayer Iridate Sr3Ir2O7: Enhanced Pseudo-dipolar Interactions Near the Mott Transition

109   0   0.0 ( 0 )
 نشر من قبل Bumjoon Kim
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using resonant inelastic x-ray scattering, we observe in the bilayer iridate Sr3Ir2O7, a spin-orbit coupling driven magnetic insulator with a small charge gap, a magnon gap of ~92 meV for both acoustic and optical branches. This exceptionally large magnon gap exceeds the total magnon bandwidth of ~70 meV and implies a marked departure from the Heisenberg model, in stark contrast to the case of the single-layer iridate Sr2IrO4. Analyzing the origin of these observations, we find that the giant magnon gap results from bond-directional pseudo-dipolar interactions that are strongly enhanced near the metal-insulator transition boundary. This suggests that novel magnetism, such as that inspired by the Kitaev model built on the pseudo-dipolar interactions, may emerge in small charge-gap iridates.


قيم البحث

اقرأ أيضاً

We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr2IrO4 and Sr3Ir2O7. Both compounds exhibit pronounced two-magnon Raman scattering features with different ener gies, lineshapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the lineshapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.
Correlation-driven screening of disorder is studied within the typical-medium dynamical mean-field theory (TMT-DMFT) of the Mott-Anderson transition. In the strongly correlated regime, the site energies epsilon_R^i characterizing the effective disord er potential are strongly renormalized due to the phenomenon of Kondo pinning. This effect produces very strong screening when the interaction U is stronger then disorder W, but applies only to a fraction of the sites in the opposite limit (U<W).
We examined the temperature (T) evolution of the optical conductivity spectra of Sr$_3$Ir$_2$O$_7$ over a wide range of 10-400 K. The system was barely insulating, exhibiting a small indirect bandgap of $sim$0.1 eV. The low-energy features of the opt ical d-d excitation (${hbar}{omega}$ $<$ 0.3 eV) evolved drastically, whereas such evolution was not observed for the O K-edge X-ray absorption spectra. This suggests that the T evolution in optical spectra is not caused by a change in the bare (undressed) electronic structure, but instead, presumably originates from an abundance of phonon-assisted indirect excitations. Our results showed that the low-energy excitations were dominated by phonon-absorption processes which involve, in particular, the optical phonons. This implies that phonon-assisted processes significantly facilitate the charge dynamics in barely insulating Sr$_3$Ir$_2$O$_7$.
312 - Yue Cao , Xuerong Liu , Wenhu Xu 2016
We study the evolution of magnetic excitations in the disordered two-dimensional antiferromagnet Sr2Ir1-xRuxO4. A gigantic magnetic gap greater than 40 meV opens at x = 0.27 and increases with Ru concentration, rendering the dispersive magnetic excit ations in Sr2IrO4 almost momentum independent. Up to a Ru concentration of x = 0.77, both experiments and first-principles calculations show the Ir Jeff = 1/2 state remains intact. The magnetic gap arises from the local interaction anisotropy in the proximity of the Ru disorder. Under the coherent potential approximation, we reproduce the experimental magnetic excitations using the disordered Heisenberg antiferromagnetic model with suppressed next-nearest neighbor ferromagnetic coupling.
We point out that fractionalized bosonic charge excitations can explain the recently discovered photo-induced superconducting-like response in $kappatext{-(ET})_2text{Cu}[text{N(CN)}_2]text{Br}$, an organic metal close to the Mott transition. The pum p laser exerts a periodic drive on the fractionalized field, creating a non-equilibrium condensate, which gives a Drude peak much narrower than the equilibrium scattering rate, hence superconducting-like response. Our proposal illuminates new possibilities of detecting fractionalization and can be readily tested in spin liquid candidates and in cold atom systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا