ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-magnon Raman scattering and pseudospin-lattice interactions in Sr2IrO4 and Sr3Ir2O7

114   0   0.0 ( 0 )
 نشر من قبل Mathieu Le Tacon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr2IrO4 and Sr3Ir2O7. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, lineshapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the lineshapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

قيم البحث

اقرأ أيضاً

$rm Sr_2IrO_4$ is an archetypal spin-orbit-coupled Mott insulator and has been extensively studied in part because of a wide range of predicted novel states. Limited experimental characterization of these states thus far brings to light the extraordi nary susceptibility of the physical properties to the lattice, particularly, the Ir-O-Ir bond angle. Here, we report a newly observed microscopic rotation of the IrO$_6$ octahedra below 50~K measured by single crystal neutron diffraction. This sharp lattice anomaly provides keys to understanding the anomalous low-temperature physics and a direct confirmation of a crucial role that the Ir-O-Ir bond angle plays in determining the ground state. Indeed, as also demonstrated in this study, applied electric current readily weakens the antiferromagnetic order via the straightening of the Ir-O-Ir bond angle, highlighting that even slight change in the local structure can disproportionately affect the physical properties in the spin-orbit-coupled system.
We present a theory for Raman scattering on 2D quantum antiferromagnets. The microscopic Fleury-Loudon Hamiltonian is expressed in terms of an effective $O(3)$ - model. Well within the Neel ordered phase, the Raman spectrum contains a two-magnon and a two-Higgs contribution, which are calculated diagramatically. The vertex functions for both the Higgs and magnon contributions are determined from a numerical solution of the corresponding Bethe-Salpeter equation. Due to the momentum dependence of the Raman vertex in the relevant $B_{1g}+E_{2g}$ symmetry, the contribution from the Higgs mode is strongly suppressed. Except for intermediate values of the Higgs mass, it does not show up as separate peak in the spectrum but gives rise to a broad continuum above the dominant contribution from two-magnon excitations. The latter give rise to a broad, asymmetric peak at $omegasimeq 2.44, J$, which is a result of magnon-magnon interactions mediated by the Higgs mode. The full Raman spectrum is determined completely by the antiferromagnetic exchange coupling $J$ and a dimensionless Higgs mass. Experimental Raman spectra of undoped cuprates turn out to be in very good agreement with the theory only with inclusion of the Higgs contribution. They thus provide a clear signature of the presence of a Higgs mode in spin one-half 2D quantum antiferromagnets.
We investigate the resonant two-magnon Raman scattering in the two-dimensional (2D) and ladder-type Mott insulators by using a half-filled Hubbard model in the strong coupling limit. By performing numerical diagonalization calculations for small clus ters, we find that the model can reproduce the experimental features in the 2D that the Raman intensity is enhanced when the incoming photon energy is not near the absorption edge but well above it. In the ladder-type Mott insulators, the Raman intensity is found to resonate with absorption spectrum in contrast to the 2D system. The difference between 2D and the ladder systems is explained by taking into account the fact that the ground state in 2D is a spin-ordered state while that in ladder is a spin-gapped one.
Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.
325 - J. Porras , J. Bertinshaw , H. Liu 2018
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find that in order to understand even basic magnetization measurements, a formerly overlooked in-plane anisotropy is fundamental. In addition to magnetometry, we use neutron diffraction, inelastic neutron scattering and resonant elastic and inelastic x-ray scattering to identify and quantify the interactions that determine the global symmetry of the system and govern the linear responses of pseudospins to external magnetic felds and their low-energy dynamics. We find that a pseudospin-only Hamiltonian is insufficient for an accurate description of the magnetism in Sr2IrO4 and that pseudospin-lattice coupling is essential. This finding should be generally applicable to other pseudospin systems with sizable orbital moments sensitive to anisotropic crystalline environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا