ﻻ يوجد ملخص باللغة العربية
Following a recent discovery of the Insulator-to-Metal Transition induced by electric field in GaTa$_{4}$Se$_{8}$, we performed a detailed Scanning Tunneling Microscopy/Spectroscopy study of both pristine (insulating) and transited (conducting) crystals of this narrow gap Mott insulator. The spectroscopic maps show that pristine samples are spatially homogeneous insulators while the transited samples reveal at nanometer scale a complex electronic pattern that consists of metallic and super-insulating patches immersed in the pristine insulating matrix. Surprisingly, both kinds of patches are accompanied by a strong local topographic inflation, thus evidencing for a strong electron-lattice coupling involved in this metal-insulator transition. Finally, using a strong electric field generated across the STM tunneling junction, we demonstrate the possibility to trig the metal-insulator transition locally even at room temperature.
Electronic conduction in GaM$_{4}$Se$_{8}$ (M=Nb;Ta) compounds with the fcc GaMo$_{4}$S$_{8}$-type structure originates from hopping of localized unpaired electrons (S=1/2) among widely separated tetrahedral M$_{4}$ metal clusters. We show that under
Metal-insulator transitions (MIT) belong to a class of fascinating physical phenomena, which includes superconductivity, and colossal magnetoresistance (CMR), that are associated with drastic modifications of electrical resistance. In transition meta
Our magnetic, electrical, and thermal measurements on single-crystals of the novel Mott insulator, Sr2IrO4, reveal a novel giant magneto-electric effect (GME) arising from a frustrated magnetic/ferroelectric state whose signatures are: (1) a strongly
Electron--electron repulsion, on the one hand, can result in bound pair, which has heavy effective mass. On the other hand, it is also the cause of Mott insulator. We study the effect of a staggered magnetic field on a Hubbard model. We find that a b
Insulator-to-metal transition in Ca$_{2}$RuO$_{4}$ has drawn keen attention because of its sensitivity to various stimulation and its potential controllability. Here, we report a direct observation of Fermi surface, which emerges upon introducing exc