ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Current Studies for SwissFEL

73   0   0.0 ( 0 )
 نشر من قبل Frederic Le Pimpec
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Activation of the surroundings of an accelerator must be quantified and those data provided to the official agencies. This is a necessary step in obtaining the authorization to operate such an accelerator. SwissFEL, being a fourth generation light source, will produce more accelerated charges, which are dumped or lost, than conventional third generation light source, such as the Swiss Light Source. We have simulated the propagation of a dark current beam produced in the photoelectron gun using tracking codes like ASTRA and Elegant for the current layout of SwissFEL. Experimental studies have been carried out at the SwissFEL test facilities at PSI (C-Band RF Stand and SwissFEL Injector Test Facility), in order to provide necessary input data for detailed study of components (RF gun and C-band RF structures) using the simulation code OPAL. A summary of these studies are presented.

قيم البحث

اقرأ أيضاً

Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies-19 GeV in the case of the International Linear Collider (ILC) main linac-before they are r emoved by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modeling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 {mu}Sv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service tunnels.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
55 - Y. Nosochkov , J. Corbett 2001
The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity.
Undesirable electron field emission (a.k.a. dark current) in high gradient RF photocathode guns deteriorates the quality of photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resol ution (~100 um) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Dark current from the cathode has been observed to be dominated by several separated strong emitters. The field enhancement factor, beta, of selected regions on the cathode has been measured. The post scanning electron microscopy (SEM) and white light interferometer (WLI) surface examinations reveal the origins of ~75% strong emitters overlap with the spots where rf breakdown have occurred.
Numerical simulations have shown that the recently proposed crab waist scheme of beam-beam collisions can substantially boost the luminosity of existing and future electron-positron colliders. In this paper we describe the crab waist concept and disc uss potential advantages that such a scheme can provide. We also present the results of beam-beam simulations for the two currently proposed projects based on the crab waist scheme: the DAFNE upgrade and the Super B-factory project.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا