ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Current and Radiation Shielding Studies For The ILC Main Linac

81   0   0.0 ( 0 )
 نشر من قبل Mokhov, Nikolai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies-19 GeV in the case of the International Linear Collider (ILC) main linac-before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modeling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 {mu}Sv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service tunnels.

قيم البحث

اقرأ أيضاً

Activation of the surroundings of an accelerator must be quantified and those data provided to the official agencies. This is a necessary step in obtaining the authorization to operate such an accelerator. SwissFEL, being a fourth generation light so urce, will produce more accelerated charges, which are dumped or lost, than conventional third generation light source, such as the Swiss Light Source. We have simulated the propagation of a dark current beam produced in the photoelectron gun using tracking codes like ASTRA and Elegant for the current layout of SwissFEL. Experimental studies have been carried out at the SwissFEL test facilities at PSI (C-Band RF Stand and SwissFEL Injector Test Facility), in order to provide necessary input data for detailed study of components (RF gun and C-band RF structures) using the simulation code OPAL. A summary of these studies are presented.
71 - I. Wilson , W. Wuensch 2000
This paper outlines the RF design of the CLIC (Compact Linear Collider) 30 GHz main linac accelerating structure and gives the resulting longitudinal and transverse mode properties. The critical requirement for multibunch operation, that transverse w akefields be suppressed by two orders of magnitude within 0.7 ns (twenty fundamental mode cycles), has been demonstrated in a recent ASSET experiment. The feasibility of operating the structure at an accelerating gradient of 150 MV/m for 130 ns has yet to be demonstrated. Damage of the internal copper surfaces due to high electric fields or resulting from metal fatigue induced by cyclic surface heating effects are a major concern requiring further study.
73 - V. Kovalenko 2012
To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented.
In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA@SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN. Two advanced acceleration schemes will be applied, namely an ultimate high gr adient 1 GeV X-band linac together with a plasma acceleration stage to provide accelerating gradients of the GeV/m order. A FEL scheme is foreseen to produce X-ray beams within 3-10 nm range. A 500-TW Laser system is also foreseen for electron and ion production experiments and a Compton backscattering Interaction is planned together with extraction beamlines at intermediate electron beam energy for neutron beams and THz radiation production. The electron beam dynamics studies in the linac are here presented together with the preliminary machine layout.
166 - N.V. Mokhov 2017
Comprehensive studies with the MARS15(2016) Monte-Carlo code are described on evaluation of prompt and residual radiation levels induced by nominal and accidental beam losses in the 5-MW, 2-GeV European Spallation Source (ESS) Linac. These are to pro vide a basis for radiation shielding design verification through the accelerator complex. The calculation model is based on the latest engineering design and includes a sophisticated algorithm for particle tracking in the machine RF cavities as well as a well-established model of the beam loss. Substantial efforts were put in solving the deep-penetration problem for the thick shielding around the tunnel with numerous complex penetrations. It allowed us to study in detail not only the prompt dose, but also component and air activation, radiation loads on the soil outside the tunnel, and skyshine studies for the complicated 3-D surface above the machine. Among the other things, the newest features in MARS15 (2016), such as a ROOT-based beamline builder and a TENDL-based event generator for nuclear interactions below 100 MeV, were very useful in this challenging application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا