ﻻ يوجد ملخص باللغة العربية
The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity.
The SPEAR 3 upgrade lattice will provide much reduced beam emittance to increase the brightness of synchrotron radiation beams from wigglers and undulators. Seven existing insertion devices will be used in the lattice. In this paper we review the wig
In the Hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the
The cw CCL being designed for the Accelerator Production of Tritium (APT) project accelerates protons from 96MeV to 211MeV. It consists of 99 segments each containing up to seven accelerating cavities. Segments are coupled by intersegment coupling ca
Activation of the surroundings of an accelerator must be quantified and those data provided to the official agencies. This is a necessary step in obtaining the authorization to operate such an accelerator. SwissFEL, being a fourth generation light so
The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to