ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial (111) Films of Cu, Ni, and Cu$_xNi$_y$ on {alpha}-Al$_2$O$_3$(0001) for Graphene Growth by Chemical Vapor Deposition

144   0   0.0 ( 0 )
 نشر من قبل Mark Keller
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Films of (111)-textured Cu, Ni, and Cu$_x$Ni$_y$ were evaluated as substrates for chemical vapor deposition of graphene. A metal thickness of 400 nm to 700 nm was sputtered onto a substrate of $alpha-$Al$_2$O$_3$(0001) at temperatures of 250 C to 650 C. The films were then annealed at 1000 C in a tube furnace. X-ray and electron backscatter diffraction measurements showed all films have (111) texture but have grains with in-plane orientations differing by $60^{circ}$. The in-plane epitaxial relationship for all films was $[110]_{metal}$||$[10bar{1}0]_{{Al}_{2}{O}_{3}}$. Reactive sputtering of Al in O$_2$ before metal deposition resulted in a single in-plane orientation over 97 % of the Ni film but had no significant effect on the Cu grain structure. Transmission electron microscopy showed a clean Ni/Al$_2$O$_3$ interface, confirmed the epitaxial relationship, and showed that formation of the $60^{circ}$ twin grains was associated with features on the Al$_2$O$_3$ surface. Increasing total pressure and Cu vapor pressure during annealing decreased the roughness of Cu and and Cu$_x$Ni$_y$ films. Graphene grown on the Ni(111) films was more uniform than that grown on polycrystalline Ni/SiO$_2$ films, but still showed thickness variations on a much smaller length scale than the distance between grains.



قيم البحث

اقرأ أيضاً

The direct liquid injection chemical vapor deposition (DLI-CVD) technique has been used for the growth of cobalt ferrite (CFO) films on (100)-oriented MgAl$_2$O$_4$ (MAO) substrates. Smooth and highly epitaxial cobalt ferrite thin films, with the epi taxial relationship $mathrm{MAO} (100):[001] parallel mathrm{CFO} (100):[001]$, are obtained under optimized deposition conditions. The films exhibit bulk-like structural and magnetic properties with an out-of-plane lattice constant of $8.370;mathrm{AA}$ and a saturation magnetization of $420;mathrm{kA/m}$ at room temperature. The Raman spectra of films on MgAl$_2$O$_4$ support the fact that the Fe$^{3+}$- and the Co$^{2+}$-ions are distributed in an ordered fashion on the B-site of the inverse spinel structure. The DLI-CVD technique has been extended for the growth of smooth and highly oriented cobalt ferrite thin films on a variety of other substrates, including MgO, and piezoelectric lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate substrates.
142 - Chi Vo-Van 2011
Uniform single layer graphene was grown on single-crystal Ir films a few nanometers thick which were prepared by pulsed laser deposition on sapphire wafers. These graphene layers have a single crystallographic orientation and a very low density of de fects, as shown by diffraction, scanning tunnelling microscopy, and Raman spectroscopy. Their structural quality is as high as that of graphene produced on Ir bulk single crystals, i.e. much higher than on metal thin films used so far.
144 - R. Miki , K. Zhao , T. Hajiri 2020
We report the growth of noncollinear antiferromagnetic (AFM) Mn$_3$Ni$_{0.35}$Cu$_{0.65}$N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to nonzero Berry curvature. We found that post-annealing at 500$^c irc$C can significantly improve the AHE signals, though using the appropriate post-annealing conditions is important. The AHE and magnetization loops show sharp flipping at the coercive field in (111) films, while (001) films are hard to saturate by a magnetic field. The anomalous Hall conductivity of (111) films is an order of magnitude larger than that of (001) films. The present results provide not only a better understanding of the AHE in Mn$_3X$N systems but also further opportunities to study the unique phenomena related to noncollinear AFM.
219 - Gintare Statkute 2015
GaAs nanowires were grown by metalorganic vapor phase epitaxy on evaporated metal films (Au, Au / Pd, Ag, Ni, Ga, Cu, Al, Ti). The samples were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images reveal that nanowires grow directly on the metals. TEM characterization shows crystalline nanowire (nw) structure originating from Au. Article presents state of the art about nanowire-metal interface growth and enumerates nanowire contacting methods with metals.
156 - Sher Alam 2001
The results of EXAFS measurements at 300 K for the superconducting compounds Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ [Tl-1234], TlBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Tl-1212], and CuBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Cu-1234]. are reported. We have measured the EXAFS spectrum for Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ in the range 10K-300K, however here we limit our discussion to the spectrum at 300 K. This material is prepared under high pressure [3.5 GPa] from precursors with small carbon concentrations and exhibits a T$_c$ of $~127$ K. We have also performed ``aging study by looking at XRD for this material after approximately one year. The XRD results at 300 K are ``unchanged. It is of interest to compare the EXAFS spectrum of this compound with the corresponding compound Cu-1234. Remarks on the choice of appropriate EXAFS standard for this and related compounds are also given. Based on our data analysis we quantify disorder in these systems. By using the Cu-O in-plane distance we give values for the microstrain parameter, which can be related to the charge ordering transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا