ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray phase-contrast imaging for laser-induced shock waves

75   0   0.0 ( 0 )
 نشر من قبل Luca Antonelli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray phase-contrast imaging (XPCI) is a versatile technique with wide-ranging applications, particularly in the fields of biology and medicine. Where X-ray absorption radiography requires high density ratios for effective imaging, XPCI is more sensitive to the density gradients inside a material. In this letter, we apply XPCI to the study of laser-driven shockc waves. We used two laser beams from the Petawatt High-Energy Laser for Heavy Ion EXperiments (PHELIX) at GSI: one to launch a shock wave and the other to generate an X-ray source for XPCI. Our results suggest that this technique is suitable for the study of warm dense matter (WDM), inertial confinement fusion (ICF) and laboratory astrophysics.



قيم البحث

اقرأ أيضاً

Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.
Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiati on has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilise betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.
111 - A.H. Lumpkin 2018
We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to t he x-ray images, we observed a four times smaller system point spread function (21 {mu}m (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphors 80-{mu}m value. Potential fiber-optic plate depth-of-focus aspects and 33-{mu}m diameter carbon fiber imaging are also addressed.
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For e xample, the accelerating voltages of the X-ray tube are supposed to be respectively set as 40 kV and 70 kV, with other energy spectra being practically unusable for dual energy imaging. This system thus has low flexibility and maneuverability in practical applications. In this work, dual energy X-ray phase-contrast imaging is performed in a grating-based non-interferometric imaging system rather than in a Talbot-Lau interferometer. The advantage of this system is that, theoretically speaking, any two separated energy spectra can be utilized to perform dual energy X-ray phase-contrast imaging. The preliminary experimental results show that dual-energy X-ray phase contrast imaging is successfully performed when the accelerating voltages of the X-ray tube are successively set as 40 kV and 50 kV. Our work increases the flexibility and maneuverability when employing dual-energy X-ray phase-contrast imaging in medical diagnoses and nondestructive tests.
248 - L. M. Chen , F. Liu , W. M. Wang 2009
Bright Ar K-shell x-ray with very little background has been generated using an Ar clustering gas jet target irradiated with an 800 mJ, 30 fs ultra-high contrast laser, with the measured flux of 1.1 x 10^4 photons/mrad^2/pulse. This intense x-ray sou rce critically depends on the laser contrast and the laser energy and the optimization of this source with interaction is addressed. Electron driven by laser electric field directly via nonlinear resonant is proved in simulation, resulting in effective electron heating and the enhancement of x-ray emission. The x-ray pulse duration is demonstrated to be only 10 fs, as well as a source size of 20 um, posing great potential application for single-shot ultrafast x-ray imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا