ﻻ يوجد ملخص باللغة العربية
The adiabatic insertion of a pi flux into a quantum spin Hall insulator gives rise to localized spin and charge fluxon states. We demonstrate that pi fluxes can be used in exact quantum Monte Carlo simulations to identify a correlated Z_2 topological insulator using the example of the Kane-Mele-Hubbard model. In the presence of repulsive interactions, a pi flux gives rise to a Kramers doublet of spinon states with a Curie law signature in the magnetic susceptibility. Electronic correlations also provide a bosonic mode of magnetic excitons with tunable energy that act as exchange particles and mediate a dynamical interaction of adjustable range and strength between spinons. pi fluxes can therefore be used to build models of interacting spins. This idea is applied to a three-spin ring and to one-dimensional spin chains. Due to the freedom to create almost arbitrary spin lattices, correlated topological insulators with pi fluxes represent a novel kind of quantum simulator potentially useful for numerical simulations and experiments.
The recent discovery of magnetic topological insulators has opened new avenues to explore exotic states of matter that can emerge from the interplay between topological electronic states and magnetic degrees of freedom, be it ordered or strongly fluc
We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zon
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi
A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered syst
We detect the topological properties of Chern insulators with strong Coulomb interactions by use of cluster perturbation theory and variational cluster approach. The common scheme in previous studies only involves the calculation of the interacting b