ﻻ يوجد ملخص باللغة العربية
The recent discovery of magnetic topological insulators has opened new avenues to explore exotic states of matter that can emerge from the interplay between topological electronic states and magnetic degrees of freedom, be it ordered or strongly fluctuating. Motivated by the effects that the dynamics of the magnetic moments can have on the topological surface states, we investigate the magnetic fluctuations across the (MnBi$_{text{2}}$Te$_{text{4}}$)(Bi$_{text{2}}$Te$_{text{3}}$)$_{text{n}}$ family. Our paramagnetic electron spin resonance experiments reveal contrasting Mn spin dynamics in different compounds, which manifests in a strongly anisotropic Mn spin relaxation in MnBi$_{text{2}}$Te$_{text{4}}$ while being almost isotropic in MnBi$_{text{4}}$Te$_{text{7}}$. Our density-functional calculations explain these striking observations in terms of the sensitivity of the local electronic structure to the Mn spin-orientation, and indicate that the anisotropy of the magnetic fluctuations can be controlled by the carrier density, which may directly affect the electronic topological surface states.
Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving Dirac fermions that behave as massless relativistic particles. These Dirac fermions are responsible for achieving a number of nov
Quantized Hall conductance is a generic feature of two dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed t
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be gene
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini