ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Survey of High Temperature Emission in Solar Active Regions

96   0   0.0 ( 0 )
 نشر من قبل Harry Warren
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent analysis of observations taken with the EIS instrument on Hinode suggests that well constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission cores. We focus on measurements in the inter-moss region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

قيم البحث

اقرأ أيضاً

We performed a systematic study of 12 active regions (ARs) with a broad range of areas, magnetic flux and associated solar activity in order to determine whether there are upflows present at the AR boundaries and if these upflows exist, whether there is a high speed asymmetric blue wing component present in the upflows. To identify the presence and locations of the AR upflows we derive relative Doppler velocity maps by fitting a Gaussian function to {it Hinode}/EIS Fe XII 192.394,AA line profiles. To determine whether there is a high speed asymmetric component present in the AR upflows we fit a double Gaussian function to the Fe XII 192.394,AA mean spectrum that is computed in a region of interest situated in the AR upflows. Upflows are observed at both the east and west boundaries of all ARs in our sample with average upflow velocities ranging between -5 to -26~km s$^{-1}$. A blue wing asymmetry is present in every line profile. The intensity ratio between the minor high speed asymmetric Gaussian component compared to the main component is relatively small for the majority of regions however, in a minority of cases (8/30) the ratios are large and range between 20 to 56~%. These results suggest that upflows and the high speed asymmetric blue wing component are a common feature of all ARs.
We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active regions. Functional dependence of polarity separation and maximum magnetic flux of an active region is in agreement with a simple model of flux emergence as the result of buoyancy forces. Our investigation did not reveal any strong dependence of emergence rate on twist properties of active regions.
We present results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from January 1997 until December 2006 are utilized. Data from the Michelson Doppler Imager (MDI) instrument on-board the {it Solar and Heliospheric Observatory} (SOHO) operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph and {it Hinode} SOT/SP instrument were used. Intermittency spectra were derived via high-order structure functions and flatness functions. The flatness function exponent is a measure of the degree of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated to the flare productivity (the correlation coefficient is - 0.63). {it Hinode} data show that the intermittency regime is extended toward the small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be more broad for ARs of highest flare productivity as compared to that of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. Strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.
The alpha effect is believed to play a key role in the generation of the solar magnetic field. A fundamental test for its significance in the solar dynamo is to look for magnetic helicity of opposite signs in the two hemispheres, and at small and lar ge scales. However, measuring magnetic helicity is compromised by the inability to fully infer the magnetic field vector from observations of solar spectra, caused by what is known as the pi ambiguity of spectropolarimetric observations. We decompose linear polarisation into parity-even and parity-odd E and B polarisations, which are not affected by the pi ambiguity. Furthermore, we study whether the correlations of spatial Fourier spectra of B and parity-even quantities such as E or temperature T are a robust proxy for magnetic helicity of solar magnetic fields. We analyse polarisation measurements of active regions observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics observatory. Theory predicts the magnetic helicity of active regions to have, statistically, opposite signs in the two hemispheres. We then compute the parity-odd E B and T B correlations, and test for systematic preference of their sign based on the hemisphere of the active regions. We find that: (i) E B and T B correlations are a reliable proxy for magnetic helicity, when computed from linear polarisation measurements away from spectral line cores, and (ii) E polarisation reverses its sign close to the line core. Our analysis reveals Faraday rotation to not have a significant influence on the computed parity-odd correlations. The EB decomposition of linear polarisation appears to be a good proxy for magnetic helicity independent of the pi ambiguity. This allows us to routinely infer magnetic helicity directly from polarisation measurements.
The relative amount of high temperature plasma has been found to be a useful diagnostic to determine the frequency of coronal heating on sub-resolution structures. When the loops are infrequently heated, a broad emission measure (EM) over a wider ran ge of temperatures is expected. A narrower EM is expected for high frequency heating where the loops are closer to equilibrium. The soft X-ray spectrum contains many spectral lines that provide high temperature diagnostics, including lines from Fe XVII-XIX. This region of the solar spectrum will be observed by the Marshall Grazing Incidence Spectrometer (MaGIXS) in 2020. In this paper, we derive the expected spectral lines intensity in MaGIXS to varying amounts of high temperature plasma to demonstrate that a simple line ratio of these provides a powerful diagnostic to determine the heating frequency. Similarly, we examine ratios of AIA channel intensities, filter ratios from a XRT, and energy bands from the FOXSI sounding rocket to determine their sensitivity to this parameter. We find that both FOXSI and MaGIXS provide good diagnostic capability for high-temperature plasma. We then compare the predicted line ratios to the output of a numerical model and confirm the MaGIXS ratios provide an excellent diagnostic for heating frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا