ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking arches with vibrations: the role of defects

51   0   0.0 ( 0 )
 نشر من قبل Angel Garcimartin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental results about the stability of arches against external vibrations. Two dimensional strings of mutually stabilizing grains are geometrically analyzed and subsequently submitted to a periodic forcing at fixed frequency and increasing amplitude. The main factor that determines the granular arch resistance against vibrations is the maximum angle among those formed between any particle of the arch and its two neighbors: the higher the maximum angle is, the easier to break the arch. Based in an analysis of the forces, a simple explanation is given for this dependence. From this, interesting information can be extracted about the expected magnitudes of normal forces and friction coefficients of the particles conforming the arches.


قيم البحث

اقرأ أيضاً

It has become clear in recent years that the simple uniform wormlike chain model needs to be modified in order to account for more complex behavior which has been observed experimentally in some important biopolymers. For example, the large flexibili ty of short ds-DNA has been attributed to kink or hinge defects. In this paper, we calculate analytically, within the weak bending approximation, the force-extension relation of a wormlike chain with a permanent hinge defect along its contour. The defect is characterized by its bending energy (which can be zero, in the completely flexible case) and its position along the polymer contour. Besides the bending rigidity of the chain, these are the only parameters which describe our model. We show that a hinge defect causes a significant increase in the differential tensile compliance of a pre-stressed chain. In the small force limit, a hinge defect significantly increases the entropic elasticity. Our results apply to any pair of semiflexible segments connected by a hinge. As such, they may also be relevant to cytoskeletal filaments (F-actin, microtubules), where one may treat the cross-link connecting two filaments as a hinge defect.
We numerically investigate the mechanical properties of static packings of ellipsoidal particles in 2D and 3D over a range of aspect ratio and compression $Delta phi$. While amorphous packings of spherical particles at jamming onset ($Delta phi=0$) a re isostatic and possess the minimum contact number $z_{rm iso}$ required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming ($z < z_{rm iso}$) from naive counting arguments, which assume that all contacts give rise to linearly independent constraints on interparticle separations. To understand this behavior, we decompose the dynamical matrix $M=H-S$ for static packings of ellipsoidal particles into two important components: the stiffness $H$ and stress $S$ matrices. We find that the stiffness matrix possesses $N(z_{rm iso} - z)$ eigenmodes ${hat e}_0$ with zero eigenvalues even at finite compression, where $N$ is the number of particles. In addition, these modes ${hat e}_0$ are nearly eigenvectors of the dynamical matrix with eigenvalues that scale as $Delta phi$, and thus finite compression stabilizes packings of ellipsoidal particles. At jamming onset, the harmonic response of static packings of ellipsoidal particles vanishes, and the total potential energy scales as $delta^4$ for perturbations by amplitude $delta$ along these `quartic modes, ${hat e}_0$. These findings illustrate the significant differences between static packings of spherical and ellipsoidal particles.
In this Letter, we study the collective behaviour of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedently large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that, even well below the transition, swimmers move in a correlated fashion that cannot be described by a mean-field approach. We develop a novel kinetic theory that captures these correlations and is non-perturbative in the swimmer density. To provide an experimentally accessible measure of correlations, we calculate the diffusivity of passive tracers and reveal its non-trivial density dependence. The theory is in quantitative agreement with the lattice Boltzmann simulations and captures the asymmetry between pusher and puller swimmers below the transition to turbulence.
169 - Rene Messina 2007
The adsorption of charged colloids (macroions) onto an oppositely charged planar substrate is investigated theoretically. Taking properly into account the finite size of the macroions, unusual behaviors are reported. It is found that the role of the coions (the little salt-ions carrying the same sign of charge as that of the substrate) is crucial to understand the mechanisms involved in the process of macroion adsorption. In particular, the coions can accumulate near the substrates surface and lead to a counter-intuitive {it surface charge amplification}.
107 - F. Vega Reyes , A. Santos , 2013
A gas of inelastic rough spheres admits a spatially homogeneous base state which turns into a hydrodynamic state after a finite relaxation time. We show that this relaxation time is hardly dependent on the degree of inelasticity but increases dramati cally with decreasing roughness. An accurate description of translational-rotational velocity correlations at all times is also provided. At a given inelasticity, the roughness parameter can be tuned to produce a huge distortion from the Maxwellian distribution function. The results are obtained from a Grad-like solution of the Boltzmann-Enskog equation complemented by Monte Carlo and molecular dynamics simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا