ﻻ يوجد ملخص باللغة العربية
A gas of inelastic rough spheres admits a spatially homogeneous base state which turns into a hydrodynamic state after a finite relaxation time. We show that this relaxation time is hardly dependent on the degree of inelasticity but increases dramatically with decreasing roughness. An accurate description of translational-rotational velocity correlations at all times is also provided. At a given inelasticity, the roughness parameter can be tuned to produce a huge distortion from the Maxwellian distribution function. The results are obtained from a Grad-like solution of the Boltzmann-Enskog equation complemented by Monte Carlo and molecular dynamics simulations.
We report the emergence of a giant Mpemba effect in the uniformly heated gas of inelastic rough hard spheres: The initially hotter sample may cool sooner than the colder one, even when the initial temperatures differ by more than one order of magnitu
The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution are obtained in a unified framework as functions of the number of tra
Conditions for the stability under linear perturbations around the homogeneous cooling state are studied for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) res
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev
Dense suspensions of particles are relevant to many applications and are a key platform for developing a fundamental physics of out-of-equilibrium systems. They present challenging flow properties, apparently turning from liquid to solid upon small c