ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Spectral Inversion and Bosonic Fine Structure Extraction via Superconducting Scanning Tunneling Spectroscopy

106   0   0.0 ( 0 )
 نشر من قبل Hari Manoharan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform the scanning tunneling spectroscopy based superconductor-vacuum-superconductor analogue to the seminal McMillan and Rowell superconductor-insulator-superconductor device study of phonons in the archetypal elemental superconductor Pb [W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965)]. We invert this spectroscopic data utilizing strong-coupling Eliashberg theory to obtain a local {alpha}^2F({omega}) and find broad underlying agreement with the pioneering results, highlighted by previously unobserved electron-hole asymmetries and new fine structure which we discuss in terms of both conventional and unconventional superconducting bosonics.

قيم البحث

اقرأ أيضاً

We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial supe rconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortice s are precisely resolved. The tip density of states is influenced by the local magnetic field of the vortex, providing for a new probe of the magnetic field at nanometric sizes.
We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.
It is shown that in a structure consisting of a superconducting ring-shaped electrode overlapped by a normal metal contact through a thin oxide barrier, measurements of the tunnel current in magnetic field can probe persistent currents in the ring. T he effect manifests itself as periodic oscillations of the tunnel current through the junction at a fixed bias voltage as function of perpendicular magnetic field. The magnitude of oscillations depends on bias point. It reaches maximum at energy eV which is close to the superconducting gap and decreases with increase of temperature. The period of oscillations dF in units of magnetic flux is equal neither to h/e nor to h/2e, but significantly exceeds these values for larger loop circumferences. The phenomenon is explained by formation of metastable states with large vorticity. The pairing potential and the superconducting density of states are periodically modulated by the persistent currents at sub-critical values resulting in corresponding variations of the measured tunnel current.
Motivated by recent experiments, we investigate Josephson scanning tunneling spectroscopy in an s-wave superconductor. We demonstrate that the spatial oscillations in the superconducting order parameter induced by defects can be spatially imaged thro ugh local measurements of the critical Josephson current, providing unprecedented insight into the nature of superconductivity. The spatial form of the Josephson current reflects the nature of the defects, and can be used to probe defect-induced phase transitions from an $S=0$ to an $S=1/2$ ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا