ﻻ يوجد ملخص باللغة العربية
The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.
The reduced transition probability B(E2) of the first excited 2+ state in the nucleus 104Sn was measured via Coulomb excitation in inverse kinematics at intermediate energies. A value of 0.163(26) e^2b^2 was extracted from the absolute cross-section
The $T_z$~=~$-frac{3}{2}$ nucleus ${}^{21}$Mg has been studied by Coulomb excitation on ${}^{196}$Pt and ${}^{110}$Pd targets. A 205.6(1)-keV $gamma$-ray transition resulting from the Coulomb excitation of the $frac{5}{2}^+$ ground state to the first
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei uc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isot
The electric quadrupole transition from the first 2+ state to the ground 0+ state in 16C is studied through measurement of the lifetime by a recoil shadow method applied to inelastically scattered radioactive 16C nuclei. The measured lifetime is 75 +
Background: Recent developments in {it ab initio} nuclear theory demonstrate promising results in medium- to heavy-mass nuclei. A particular challenge for many of the many-body methodologies, however, is an accurate treatment of the electric-quadrupo