ﻻ يوجد ملخص باللغة العربية
Kolmogorov wave turbulence plays an important role for the thermalization process following plasma instabilities in nonabelian gauge theories. We show that classical-statistical simulations in SU(2) gauge theory indicate a Kolmogorov scaling exponent known from scalar models. In the range of validity of resummed perturbation theory this result is shown to agree with analytical estimates. We study the effect of classical-statistical versus quantum corrections and demonstrate that the latter lead to the absence of turbulence in the far ultraviolet.
In the present paper we study the limit of zero mass in nonabelian gauge theories both with Higgs mechanism and in the nonlinear realization of the gauge group (Stueckelberg mass). We argue that in the first case the longitudinal modes undergo a meta
We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitati
We compute nonequilibrium dynamics for classical-statistical SU(2) pure gauge theory on a lattice. We consider anisotropic initial conditions with high occupation numbers in the transverse plane on a characteristic scale ~ Q_s. This is used to invest
We determine the non-perturbative gluon condensate of four-dimensional SU(3) gauge theory in a model independent way. This is achieved by carefully subtracting high order perturbation theory results from non-perturbative lattice QCD determinations of
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decompositi