ترغب بنشر مسار تعليمي؟ اضغط هنا

Role-Dynamics: Fast Mining of Large Dynamic Networks

180   0   0.0 ( 0 )
 نشر من قبل Ryan Rossi
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the structural dynamics of a large-scale social, biological or technological network, it may be useful to discover behavioral roles representing the main connectivity patterns present over time. In this paper, we propose a scalable non-parametric approach to automatically learn the structural dynamics of the network and individual nodes. Roles may represent structural or behavioral patterns such as the center of a star, peripheral nodes, or bridge nodes that connect different communities. Our novel approach learns the appropriate structural role dynamics for any arbitrary network and tracks the changes over time. In particular, we uncover the specific global network dynamics and the local node dynamics of a technological, communication, and social network. We identify interesting node and network patterns such as stationary and non-stationary roles, spikes/steps in role-memberships (perhaps indicating anomalies), increasing/decreasing role trends, among many others. Our results indicate that the nodes in each of these networks have distinct connectivity patterns that are non-stationary and evolve considerably over time. Overall, the experiments demonstrate the effectiveness of our approach for fast mining and tracking of the dynamics in large networks. Furthermore, the dynamic structural representation provides a basis for building more sophisticated models and tools that are fast for exploring large dynamic networks.



قيم البحث

اقرأ أيضاً

Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.
97 - En-Yu Yu , Yan Fu , Jun-Lin Zhou 2021
Many real-world systems can be expressed in temporal networks with nodes playing far different roles in structure and function and edges representing the relationships between nodes. Identifying critical nodes can help us control the spread of public opinions or epidemics, predict leading figures in academia, conduct advertisements for various commodities, and so on. However, it is rather difficult to identify critical nodes because the network structure changes over time in temporal networks. In this paper, considering the sequence topological information of temporal networks, a novel and effective learning framework based on the combination of special GCNs and RNNs is proposed to identify nodes with the best spreading ability. The effectiveness of the approach is evaluated by weighted Susceptible-Infected-Recovered model. Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods in terms of the Kendall $tau$ coefficient and top $k$ hit rate.
We study the dynamic network of relationships among avatars in the massively multiplayer online game Planetside 2. In the spring of 2014, two separate servers of this game were merged, and as a result, two previously distinct networks were combined i nto one. We observed the evolution of this network in the seven month period following the merger and report our observations. We found that some structures of original networks persist in the combined network for a long time after the merger. As the original avatars are gradually removed, these structures slowly dissolve, but they remain observable for a surprisingly long time. We present a number of visualizations illustrating the post-merger dynamics and discuss time evolution of selected quantities characterizing the topology of the network.
The majority of real-world networks are dynamic and extremely large (e.g., Internet Traffic, Twitter, Facebook, ...). To understand the structural behavior of nodes in these large dynamic networks, it may be necessary to model the dynamics of behavio ral roles representing the main connectivity patterns over time. In this paper, we propose a dynamic behavioral mixed-membership model (DBMM) that captures the roles of nodes in the graph and how they evolve over time. Unlike other node-centric models, our model is scalable for analyzing large dynamic networks. In addition, DBMM is flexible, parameter-free, has no functional form or parameterization, and is interpretable (identifies explainable patterns). The performance results indicate our approach can be applied to very large networks while the experimental results show that our model uncovers interesting patterns underlying the dynamics of these networks.
180 - Haozhe Wu , Zhiyuan Hu , Jia Jia 2019
Online Social Networks (OSNs) evolve through two pervasive behaviors: follow and unfollow, which respectively signify relationship creation and relationship dissolution. Researches on social network evolution mainly focus on the follow behavior, whil e the unfollow behavior has largely been ignored. Mining unfollow behavior is challenging because users decision on unfollow is not only affected by the simple combination of users attributes like informativeness and reciprocity, but also affected by the complex interaction among them. Meanwhile, prior datasets seldom contain sufficient records for inferring such complex interaction. To address these issues, we first construct a large-scale real-world Weibo dataset, which records detailed post content and relationship dynamics of 1.8 million Chinese users. Next, we define users attributes as two categories: spatial attributes (e.g., social role of user) and temporal attributes (e.g., post content of user). Leveraging the constructed dataset, we systematically study how the interaction effects between users spatial and temporal attributes contribute to the unfollow behavior. Afterwards, we propose a novel unified model with heterogeneous information (UMHI) for unfollow prediction. Specifically, our UMHI model: 1) captures users spatial attributes through social network structure; 2) infers users temporal attributes through user-posted content and unfollow history; and 3) models the interaction between spatial and temporal attributes by the nonlinear MLP layers. Comprehensive evaluations on the constructed dataset demonstrate that the proposed UMHI model outperforms baseline methods by 16.44% on average in terms of precision. In addition, factor analyses verify that both spatial attributes and temporal attributes are essential for mining unfollow behavior.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا