ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilization of nonclassical states of one- and two-mode radiation fields by reservoir engineering

36   0   0.0 ( 0 )
 نشر من قبل Alain Sarlette
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze a quantum reservoir engineering method, originally introduced by [Sarlette et al. in Phys. Rev. Lett. 107, 010402 (2011) -- arXiv 1011.5057], for the stabilization of non-classical field states in high quality cavities. We generalize the method to the protection of mesoscopic entangled field states shared by two non-degenerate field modes. The reservoir is made up of a stream of atoms undergoing successive composite interactions with the cavity, each combining resonant with non-resonant parts. We get a detailed insight into the competition between the engineered reservoir and decoherence. We show that the operation is quite insensitive to experimental imperfections and that it could thus be implemented in the near future, either in the context of microwave Cavity Quantum Electrodynamics or in that of circuit-QED.

قيم البحث

اقرأ أيضاً

Singularity or negativity of Glauber P-function is a widespread notion of nonclassicality, with important implications in quantum optics and with the character of an irreducible resource. Here we explore how P-nonclassicality may be generated by cond itional Gaussian measurements on bipartite Gaussian states. This nonclassical steering may occur in a weak form, which does not imply entanglement, and in a strong form that implies EPR-steerability and thus entanglement. We show that field quadratures are the best measurements to remotely generate nonclassicality, and exploit this result to derive necessary and sufficient conditions for weak and strong nonclassical steering. For two-mode squeezed thermal states (TMST), weak and strong nonclassical steering coincide, and merge with the notion of EPR steering. This also provides a new operational interpretation for P-function nonclassicality as the distinctive feature that allows one-party entanglement verification on TMSTs.
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single- photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.
98 - P. Rabl , A. Shnirman , 2004
An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 10$^4$ to 10$^5$ and for support temperatures of T $approx$ 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.
This theoretical proposal investigates how resonant interactions occurring when a harmonic oscillator is fed with a stream of entangled qubits allow us to stabilize squeezed states of the harmonic oscillator. We show that the properties of the squeez ed state stabilized by this engineered reservoir, including the squeezing strength, can be tuned at will through the parameters of the input qubits, albeit in tradeoff with the convergence rate. We also discuss the influence of the type of entanglement in the input, from a pairwise case to a more widely distributed case. This paper can be read in two ways: either as a proposal to stabilize squeezed states, or as a step towards treating quantum systems with time-entangled reservoir inputs.
346 - Si-Yuan Bai , Jun-Hong An 2021
As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that $N$ two-level systems (TLSs) located near a one-dimensional waveguide can generate a SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا