ﻻ يوجد ملخص باللغة العربية
Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.
Within a simple SO(8) algebraic model, the coexistence between isoscalar and isovector pairing modes can be successfully described using a mean-field method plus restoration of broken symmetries. In order to port this methodology to real nuclei, we n
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly
In this contribution we make a short review of recent progress on topics of current interest in nuclear physics and nuclear astrophysics. In particular, we discuss a re-analysis of the extraction of the dipole response of the pigmy resonance in $^{68
A finite rank separable approximation for the quasiparticle RPA calculations with Skyrme interactions that was proposed in our previous work is extended to take into account the coupling between one- and two-phonon terms in the wave functions of exci
We review the phenomenon of fine structure of nuclear giant resonances and its relation to different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative information on the fine structure in terms of characte