ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the submillimeter radio emission during the time-extended phase of a solar flare

264   0   0.0 ( 0 )
 نشر من قبل Amir Caspi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and which lasts for a few tens of minutes to more than one hour. The few examples discussed in the literature indicate that such long-lasting submillimeter emission is most likely thermal bremsstrahlung. We present a detailed analysis of the time-extended phase of the 2003 October 27 (M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray, EUV, and H{alpha} observations. We find that the time-extended radio emission is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3 MK, respectively. At 345 GHz, there is an additional contribution from chromospheric material at a few 10^4 K. These results, which may also apply to other millimeter-submillimeter radio events, are not consistent with the expectations from standard semi-empirical models of the chromosphere and transition region during flares, which predict observable radio emission from the chromosphere at all frequencies where the corona is transparent.



قيم البحث

اقرأ أيضاً

The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as Kislovodsk and Metsahovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near $10$~GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1~MK.
The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enh anced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to X-rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component -- the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only $sim (0.5-1)$% of the energy released, its relatively rapid ($sim$$1-10$~s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.
We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwi se) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present the infrared continuum has been detected at 30 THz (10 $mu$m) in only a few flares. I n this work we present a detailed multi-frequency analysis of SOL2012-03-13, including observations at radio millimeter and sub-millimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), H-alpha, and white-light. HXR/GR spectral analysis shows that the event is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons and alpha particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ~800 keV. It is shown that the high-energy part (above ~800 keV) of this distribution is responsible for the high-frequency radio emission (> 20 GHz) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most (~80%) of the observed 30 THz radiation can be attributed to thermal free-free emission of an optically-thin source. Using the F2 flare atmospheric model this thin source is found to be at temperatures T~8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80% of the 30 THz excess radiation, can be due to energy deposition by non-thermal flare accelerated electrons, protons and alpha particles. The remaining 20% of the 30 THz excess emission is found to be radiated from an optically-thick atmospheric layer at T~5000 K, below the temperature minimum region, where direct heating by non-thermal particles is insufficient to account for the observed infrared radiation.
Solar flare hard X-ray spectroscopy serves as a key diagnostic of the accelerated electron spectrum. However, the standard approach using the collisional cold thick-target model poorly constrains the lower-energy part of the accelerated electron spec trum, and hence the overall energetics of the accelerated electrons are typically constrained only to within one or two orders of magnitude. Here we develop and apply a physically self-consistent warm-target approach which involves the use of both hard X-ray spectroscopy and imaging data. The approach allows an accurate determination of the electron distribution low-energy cutoff, and hence the electron acceleration rate and the contribution of accelerated electrons to the total energy released, by constraining the coronal plasma parameters. Using a solar flare observed in X-rays by the {em RHESSI} spacecraft, we demonstrate that using the standard cold-target methodology, the low-energy cutoff (and hence the energy content in electrons) is essentially undetermined. However, the warm-target methodology can determine the low-energy electron cutoff with $sim$7% uncertainty at the $3sigma$ level and hence permits an accurate quantitative study of the importance of accelerated electrons in solar flare energetics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا