ترغب بنشر مسار تعليمي؟ اضغط هنا

On the two-steps relaxation of mean-field glasses: p-spin model

96   0   0.0 ( 0 )
 نشر من قبل Ulisse Ferrari
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Critical slowing down dynamics of supercooled glass-forming liquids is usually understood at the mean-field level in the framework of Mode Coupling Theory, providing a two-time relaxation scenario and power-law behaviors of the time correlation function at dynamic criticality. In this work we derive critical slowing down exponents of spin-glass models undergoing discontinuous transitions by computing their Gibbs free energy and connecting the dynamic behavior to static in-state properties. Both the spherical and Isi

قيم البحث

اقرأ أيضاً

133 - C.M. Newman 2003
We study chaotic size dependence of the low temperature correlations in the SK spin glass. We prove that as temperature scales to zero with volume, for any typical coupling realization, the correlations cycle through every spin configuration in every fixed observation window. This cannot happen in short-ranged models as there it would mean that every spin configuration is an infinite-volume ground state. Its occurrence in the SK model means that the commonly used `modified clustering notion of states sheds little light on the RSB solution of SK, and conversely, the RSB solution sheds little light on the thermodynamic structure of EA models.
74 - C.M. Newman 2001
We prove the impossibility of recent attempts to decouple the Replica Symmetry Breaking (RSB) picture for finite-dimensional spin glasses from the existence of many thermodynamic (i.e., infinite-volume) pure states while preserving another signature RSB feature --- space filling relative domain walls between different finite-volume states. Thus revisions of the notion of pure states cannot shield the RSB picture from the internal contradictions that rule out its physical correctness in finite dimensions at low temperature in large finite volume.
We present a mean field model for spin glasses with a natural notion of distance built in, namely, the Edwards-Anderson model on the diluted D-dimensional unit hypercube in the limit of large D. We show that finite D effects are strongly dependent on the connectivity, being much smaller for a fixed coordination number. We solve the non trivial problem of generating these lattices. Afterwards, we numerically study the nonequilibrium dynamics of the mean field spin glass. Our three main findings are: (i) the dynamics is ruled by an infinite number of time-sectors, (ii) the aging dynamics consists on the growth of coherent domains with a non vanishing surface-volume ratio, and (iii) the propagator in Fourier space follows the p^4 law. We study as well finite D effects in the nonequilibrium dynamics, finding that a naive finite size scaling ansatz works surprisingly well.
We study the dynamic and metastable properties of the fully connected Ising $p$-spin model with finite number of variables. We define trapping energies, trapping times and self correlation functions and we analyse their statistical properties in comparison to the predictions of trap models.
146 - Stefan Boettcher 2008
Numerical results for the local field distributions of a family of Ising spin-glass models are presented. In particular, the Edwards-Anderson model in dimensions two, three, and four is considered, as well as spin glasses with long-range power-law-mo dulated interactions that interpolate between a nearest-neighbour Edwards-Anderson system in one dimension and the infinite-range Sherrington-Kirkpatrick model. Remarkably, the local field distributions only depend weakly on the range of the interactions and the dimensionality, and show strong similarities except for near zero local field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا