ﻻ يوجد ملخص باللغة العربية
We prove the impossibility of recent attempts to decouple the Replica Symmetry Breaking (RSB) picture for finite-dimensional spin glasses from the existence of many thermodynamic (i.e., infinite-volume) pure states while preserving another signature RSB feature --- space filling relative domain walls between different finite-volume states. Thus revisions of the notion of pure states cannot shield the RSB picture from the internal contradictions that rule out its physical correctness in finite dimensions at low temperature in large finite volume.
In this topical review we discuss the nature of the low-temperature phase in both infinite-ranged and short-ranged spin glasses. We analyze the meaning of pure states in spin glasses, and distinguish between physical, or ``observable, states and (pro
The fully-connected Ising $p$-spin model has for $p >2$ a discontinuous phase transition from the paramagnetic phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension do not look like these mean
We study chaotic size dependence of the low temperature correlations in the SK spin glass. We prove that as temperature scales to zero with volume, for any typical coupling realization, the correlations cycle through every spin configuration in every
Simulational studies of spin glasses in the last decade have focussed on the so-called replicon exponent $alpha$ as a means of determining whether the low-temperature phase of spin glasses is described by the replica symmetry breaking picture of Pari
Critical slowing down dynamics of supercooled glass-forming liquids is usually understood at the mean-field level in the framework of Mode Coupling Theory, providing a two-time relaxation scenario and power-law behaviors of the time correlation funct